Advertisement

Phytothérapie

, Volume 10, Issue 6, pp 342–349 | Cite as

Composés bioactifs des Crucifères : un apport bénéfique dans notre quotidien

  • S. Montaut
  • P. Rollin
  • G. R. De Nicola
  • R. Iori
  • A. Tatibouët
Article de synthèse Pharmacognosie

Résumé

Les Crucifères, ou Brassicacées, constituent une famille importante de plantes — moutarde, chou, radis, navet, cresson, roquette, wasabi, colza, etc. — qui sont couramment utilisées en alimentation humaine et animale, mais aussi dans des applications pharmaceutiques, cosmétiques et tinctoriales. Du point de vue phytochimique, cette famille végétale est caractérisée par des produits naturels soufrés appelés glucosinolates (GLs). Lorsque les cellules de ces plantes sont endommagées, les glucosinolates sont dégradés par la myrosinase, une enzyme présente dans des compartiments cellulaires séparés, libérant ainsi de nombreuses molécules. Des isothiocyanates (ITCs) sont majoritairement formés, mais aussi des nitriles, thiocyanates et oxazolidinethiones, selon la structure du glucosinolate (GL) de départ et les conditions physicochimiques de l’hydrolyse. Nous présentons quelques exemples d’utilisation des extraits végétaux de Brassicacées, en évoquant certaines avancées, notamment sur la mise en évidence de bioactivités des ITCs et des glucosinolates.

Mots clés

Brassicacées Glucosinolates Isothiocyanates Sulforaphane Érucine Raphasatine Moringa oleifera 

Bioactive compounds from crucifers: a beneficial gain in our everyday life

Abstract

Crucifers, i.e. Brassicaceae, constitute a large family of plants — mustard, cabbage, radish, turnip, cress, rocket, wasabi, oilseed rape, etc. — that are routinely used in human and animal nutrition but also as pharmaceuticals, cosmetics and dyes. From a phytochemical point of view, this plant family is characterized by sulfur-containing natural products called glucosinolates (GLs). When the plant cells are damaged, glucosinolates are degraded by myrosinase, an enzyme present in separate cell compartments, thus generating diverse molecules. Isothiocyanates are mainly formed but nitriles, thiocyanates and oxazolidinethiones can also be produced, depending on the structure of the starting glucosinolate (GL) and physicochemical conditions of hydrolysis. We present some prospects for the utilization of cruciferous plant extracts. We address some of the achievements, mainly highlighting the bioactivities of isothiocyanates and glucosinolates.

Keywords

Brassicaceae Glucosinolates Isothiocyanates Sulforaphane Erucin Raphasatin Moringa oleifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Abdull Razis AF, Bagatta M, De Nicola GR, et al. (2011) Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71(3): 298–305PubMedCrossRefGoogle Scholar
  2. 2.
    Abdull Razis AF, Iori R, Ioannides C (2011) The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer. Int J Cancer 128(12): 2775–82PubMedCrossRefGoogle Scholar
  3. 3.
    Abdull Razis AF, De Nicola GR, Pagnotta E, et al. (2012) 4-Methyl-sulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86(2): 183–94PubMedCrossRefGoogle Scholar
  4. 4.
    Barillari J, Canistro D, Paolini M, et al. (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem 53: 2475–82PubMedCrossRefGoogle Scholar
  5. 5.
    Brunelli D, Tavecchio M, Falcioni C, et al. (2010) The isothiocyanate produced from glucomoringin inhibits NF-κB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol 79(8): 1141–8PubMedCrossRefGoogle Scholar
  6. 6.
    Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 37(9–10): 973–9PubMedGoogle Scholar
  7. 7.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1): 5–51PubMedCrossRefGoogle Scholar
  8. 8.
    Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94(19): 10367–72PubMedCrossRefGoogle Scholar
  9. 9.
    Fimognari C, Nusse M, Cesari R, et al. (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23(4): 581–6PubMedCrossRefGoogle Scholar
  10. 10.
    Fimognari C, Nusse M, Berti F, et al. (2003) Sulforaphane modulates cell cycle and apoptosis in transformed and non-transformed human T lymphocytes. Ann N Y Acad Sci 1010: 393–8PubMedCrossRefGoogle Scholar
  11. 11.
    Fimognari C, Nusse M, Iori R, et al. (2004) The new isothiocyanate 4-(methylthio)butylisothiocyanate selectively affects cell-cycle progression and apoptosis induction of human leukemia cells. Invest New Drugs 22: 119–29PubMedCrossRefGoogle Scholar
  12. 12.
    IARC (2004) Handbooks of Cancer Prevention Vol. 9. “Cruciferous Vegetables, Isothiocyanates and Indole”. IARC-WHO Press, LyonGoogle Scholar
  13. 13.
    Iori R, Bernardi R, Gueyrard D, et al. (1999) Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: a chemoenzymatic route to sulforaphane. Bioorg Med Chem Lett 9: 1047–8PubMedCrossRefGoogle Scholar
  14. 14.
    Kassie F, Knasmuller S (2004) Glucosinolates and the prevention of cancer. In: Remacle C, Reusens B (eds) Functional foods, ageing and degenerative diseases. Woodhead Publishing Limited CRC, Boca Raton, pp. 615–7CrossRefGoogle Scholar
  15. 15.
    Liang H, Yuan Q (2012) Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Crit Rev Biotechnol 32(3): 218–34PubMedCrossRefGoogle Scholar
  16. 16.
    Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71(1): 6–12PubMedCrossRefGoogle Scholar
  17. 17.
    Morazzoni P, Manzotti C, Fontana G, et al. (2011) US Pat. Appl. no 0053870A1, March 3Google Scholar
  18. 18.
    Papi A, Orlandi M, Bartoloni M, et al. (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (kaiware daikon) sprouts. J Agric Food Chem 56(3): 875–83PubMedCrossRefGoogle Scholar
  19. 19.
    Pappa G, Lichtenberg M, Iori R, et al. (2006) Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res 599(1–2): 76–87PubMedGoogle Scholar
  20. 20.
    Rollin P, Tatibouet A (2011) Glucosinolates: the synthetic approach. C R Chimie 14(2–3): 194–210CrossRefGoogle Scholar
  21. 21.
    Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10): 768–80PubMedCrossRefGoogle Scholar
  22. 22.
    Yanaka A, Fahey JW, Fukumoto A, et al. (2009) Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res 2(4): 353–60CrossRefGoogle Scholar
  23. 23.
    Zanichelli F, Capasso S, Cippollaro M, et al. (2012) Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anticancer drug doses, it has a cytotoxic effect. Age 34(2): 281–93PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Y, Ho TW, Li Y (2002) US Pat. Appl. no 20020091087, July 11Google Scholar
  25. 25.
    Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89(6): 2399–403PubMedCrossRefGoogle Scholar

References Internet

  1. 26.
  2. 27.
  3. 28.
  4. 29.
  5. 30.
  6. 31.
  7. 32.
  8. 33.
    La soupe aux chouxR: http://www.soupeauxch.com/
  9. 34.
  10. 35.
  11. 36.
  12. 37.
  13. 38.
  14. 39.
    Naturactive-Laboratoires Pierre-Fabre: http://www.naturactive.fr
  15. 40.
  16. 41.
  17. 42.
    SoriaNaturalR Fitofres Lepidium et Composor 25-Lepidium complex: http://www.sorianatural.com
  18. 43.
  19. 44.

Copyright information

© Springer-Verlag France 2012

Authors and Affiliations

  • S. Montaut
    • 1
  • P. Rollin
    • 2
  • G. R. De Nicola
    • 3
  • R. Iori
    • 3
  • A. Tatibouët
    • 2
  1. 1.Department of Chemistry & Biochemistry, Biomolecular Sciences ProgrammeLaurentian UniversitySudburyCanada
  2. 2.Institut de chimie organique et analytique, UMR-CNRS 7311université d’OrléansOrléans cedex 02France
  3. 3.Consiglio per la Ricerca e le Sperimentazione in AgricolturaCentro di Ricerca per le Colture Industriali (CRA-CIN)BolognaItaly

Personalised recommendations