Advertisement

Phytothérapie

, Volume 8, Issue 3, pp 171–175 | Cite as

Activités antioxydantes de quelques fruits communs et sauvages d’Algérie

  • T. Allane
  • S. BenamaraEmail author
Article original Pharmacognosie

Résumé

Les activités antioxydantes (AA) de 27 fruits provenant principalement du nord algérien sont analysées par mesure du pouvoir réducteur du fer (III) à fer (II). De tous les fruits étudiés, la fraction (pulpe + pelure) des baie de l’arbre à fraises (Arbutus unedo L.), les mûres sauvages (Morus nigra L.) et les dattes (Phoenix dactylifera L.) noires arrondies montrent des AA plus élevées: 2 049, 1 115 et 1 091 mg de vitamine C par 100 g de masse fraîche (mf) respectivement. L’effet synergique (ES), calculé uniquement pour les pelures de trois fruits est de 1,29 ± 0,04 (arbousier/datte grenat à noyaux), 1,74 ± 0,07 (arbousier/raisins noirs), 2,24 ± 0,11 (dattes grenat à noyau/raisins noirs) et 1,45 ± 0,05 (arbousier/datte grenat à noyau/raisins noirs). L’indice d’hétérogénéité (IH) introduit dans cette étude renseigne sur la répartition des substances antioxydantes entre les différentes parties des fruits étudiés.

Mots clés

Activité antioxydante Fruits Effet synergique Indice d’hétérogénéité 

Antioxydant activities of some common and wild fruits from Algeria

Abstract

Antioxidant activities (AA) of 27 fruits from northern Algeria were studied by measurement of iron (III) to iron (II)-reducing power. Among the investigated fruit fractions, the (pulp + peel) part of arbutus berries (Arbutus unedo L.), wild mulberry (Morus nigra L.) and round black date (Phoenix dactylifera L.) showed greater antioxidant activities: 2 049, 1 115 and 1 091 mg vitamin C/100 g wet weight (ww) respectively. Also, the AA of peels and seeds were separately investigated. Mixture effect (MME), calculated for only three fruit peels, is of 1.29 ± 0.04 (arbutus/garnet wild stone date), 1.74 ± 0.07 (arbutus/black grapes), 2.24 ± 0.11 (garnet wild stone dates/black grapes) and 1.45 ± 0.05 (arbutus/garnet wild stone date/black grapes). The introduced heterogeneous index (HI) indicated a large variability in the distribution of antioxidant substances between different parts of the fruits studied.

Keywords

Antioxidant activity Fruits Mixture effect Heterogeneous index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Ahn J, Grun IU, Mustapha A (2007) Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol 24: 7–14CrossRefPubMedGoogle Scholar
  2. 2.
    Alarcao-E-Silva MLCMM, Leitao AEB, Azinheira HG, et al (2001) The Arbutus berry: Studies on its color and chemical characteristics at two mature stages. J Food Compos Anal 14: 27–35CrossRefGoogle Scholar
  3. 3.
    Al-Farsi M, Alasalvar C, Morris A, et al (2005) Compositional and sensory characteristics of three native sun-dried dte (Phoenix dactylifera L.) Varieties Grown in Oman. J Agr Food Chem 53: 7586–91CrossRefGoogle Scholar
  4. 4.
    Amarowicz R, Zegarska Z, Pegg RB, et al (2007) Antioxidant and radical scavenging activities of a barley crude extract and its fraction. Czech J Food Sci 25: 73–80Google Scholar
  5. 5.
    Ambé GA (2001) Les fruits sauvages comestibles des savanes guinéennes de Côte-d’Ivoire: état de la connaissance par une population locale, les Malinké. Biotechnol Agron Soc Environ 5(1): 43–58Google Scholar
  6. 6.
    Bagchi D, Bagchi M, Stohs SJ, et al (2000) Free radicals and grape seed proanthocyanidin extract: importance in human kealth and disease prevention. Toxicol 148(2): 87–9CrossRefGoogle Scholar
  7. 7.
    Benchelah AC, Maka M (2008) Les dattes: intérêt en nutrition. Phytothérapie 6: 117–21CrossRefGoogle Scholar
  8. 8.
    Biglari F, AlKarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palms (Phoenix dactylifera) fruits from Iran. Food Chem 107: 1636–41CrossRefGoogle Scholar
  9. 9.
    Blázovics A, Lugasi A, Szentmihályi K, et al (2003) Reducing power of the natural polyphenols of sempervivum tectorum in vitro and in vivo. Acta Biol Szeged 47 (1–4): 99–102Google Scholar
  10. 10.
    Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317–33PubMedCrossRefGoogle Scholar
  11. 11.
    Chen HY, Yen GC (2007) Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem 101: 686–94CrossRefGoogle Scholar
  12. 12.
    Dauchet L, Amouyel PH, Dallongeville J (2005) Consommation de fruits et légumes et risque d’accident vasculaire cérébral et cardiaque: méta-analyse des études épidémiologiques prospectives. Cah Nutr Diet 40(1): 31–40Google Scholar
  13. 13.
    Gao L, Mazza G (1995) Characterization, quantitation, and distribution of anthocyanins and colourless phenolics in sweet cherries. J Agr Food Chem 43: 343–46CrossRefGoogle Scholar
  14. 14.
    Guo C, Yang J, Wei J, et al (2003) Antioxydant activities of peel, pulp, and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23: 1719–26CrossRefGoogle Scholar
  15. 15.
    Hinneberg I, Dorman D HJ, Hiltunen R (2006) Antioxydant activities of extracts from selected culinary herbs and spices. Food Chem 97: 122–9CrossRefGoogle Scholar
  16. 16.
    Iwahashi H (2000) Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linole eic acid hydroperoxide with ferrous ions. Biochem 346: 265–73CrossRefGoogle Scholar
  17. 17.
    Koyuncu F (2004) Morphological and agronomical characterization of native black mulberry (Morus nigra L.) in Sutçuler, Turkey. IP PG GRI News Lett 138: 32–5Google Scholar
  18. 18.
    Mansouri A, Embarek G, Kokkalou E, et al (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89: 411–20CrossRefGoogle Scholar
  19. 19.
    Mazza G, Kay CD, Cottrell T, et al (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agr Food Chem 50: 7731–7CrossRefGoogle Scholar
  20. 20.
    Oyaizu M (1986) Studies on products of browning reaction: antioxydative activity of products of browning reaction. Jpn J Nutr 44: 307–15Google Scholar
  21. 21.
    Peyrat-Maillard MN, Cuvelier ME, Berset C (2003) Antioxidant activity of phenolic compounds in 2,2’-Azobis (2-amidinopropane) dihydrochlorid de (AAPH)-Induced oxidation: synergistic and antagonistic effects. JAOCS 10(80): 1007–12Google Scholar
  22. 22.
    Pincemail J, Defraigne JO (2004) Les antioxydants: un vaste réseau de défenses pour lutter contre le es effets toxiques de l’oxygène. Symposium « antioxydants et alimentation », Institut Danone, Bruxelles, 23 octobre 2004Google Scholar
  23. 23.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxydant activity relationships of flavonoids and phenolic acids. Free Rad dical Bio Med 20: 933–56CrossRefGoogle Scholar
  24. 24.
    Scalzo J, Politi A, Pellegrini N, et al (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutr 21: 207–13CrossRefGoogle Scholar
  25. 25.
    Singh RP, Murthy KNC, Jayaprakacha GK (2002) Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models. J Agr Food Chem 50: 81–6CrossRefGoogle Scholar
  26. 26.
    Yildirim A, Mavi A, Kara A (2001)Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agr Food Chem 49: 4083–89CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2010

Authors and Affiliations

  1. 1.Département de technologie alimentaire (FSI)université de BoumerdèsBoumerdèsAlgérie

Personalised recommendations