Phytothérapie

, 6:219 | Cite as

Effets pharmacologiques de Ziziphus mauritiana Lam. (Rhamnacées) sur la pression artérielle de lapin

  • A. Koffi
  • F. Traore
  • A. L. Adjoungoua
  • F. Diafouka
Article Original Pharmacognosie

Rësumé

L’extrait aqueux de Ziziphus mauritiana (Zm) dans un intervalle de doses compris entre 0,4 et 122 mg/kg de PC provoque chez le lapin une hypotension dose-dépendante comparable à celle de l’acétylcholine (Ach). En présence de doses croissantes d’atropine comprises entre 4,10−3 et 4,84 μg/kg de PC, l’hypotension induite par l’acétylcholine (Ach) à 4,10−3 et par Zm à 22 mg/kg de PC chez le lapin est progressivement inhibée. Cette inhibition est totale pour l’acétylcholine quand l’atropine est dosée à 4,84 μg/kg de PC, tandis qu’elle est partielle pour Ziziphus mauritiana même à cette concentration. Ces résultats suggèrent que certains principes actifs contenus dans l’extrait brut de Ziziphus mauritiana seraient des substances cholinomimétiques de type muscarinique. En conclusion, ces travaux justifient, au moins en partie, l’utilisation par les tradithérapeutes africains de Ziziphus mauritiana dans le traitement de l’hypertension artérielle.

Mots clés

Ziziphus mauritiana Acétylcholine et récepteur muscarinique 

Pharmacological effects of Ziziphus mauritiana Lam. (Rhamnacees) onblood pressure in rabbits

Abstract

The extract Zizyphus mauritiana (Zm) in the dose range 0.4 to 122 mg/kg Pc, causes dose-dependent hypotension in rabbits, similar to that achieved with acetylcholine (ACh). In the presence of increasing doses of atropine, ranging from 4.10−3 to 4.84 μg/kg PC, hypotension induced in rabbits by acetylcholine (ACh) at 4.10−3 and ZM at 22 mg/kg at PC is progressively inhibited. This inhibition is total for acetylcholine when atropine is dosed at 4.84 μg/kg PC, while it is partial for Zizyphus mauritiana even at this concentration. These results suggest that some of the active ingredients contained in the crude extract of Zizyphus mauritiana might be cholinomimetic substances of the muscarinic type. In conclusion, this work justifies, at least partially, the use by African tradipractitioners of Zizyphus mauritiana in the treatment of hypertension.

Keywords

Zizyphus mauritiana Acetylcholine and muscarinic receptor 

Bibliographie

  1. 1.
    Adjanohoun EJ, Ake AL, Ahyi AMR, et al. (1988) Médecine traditionnelle et pharmacopée: contribution aux études ethnobotaniques et floristiques au Niger. ACCT, pp. 136–139Google Scholar
  2. 2.
    Adjanohoun EJ, Ake AL, Floret JJ, et al. (1981) Médecine traditionnelle et pharmacopée: contribution aux études ethnobotaniques et floristiques au Mali. ACCT, p. 87Google Scholar
  3. 3.
    Allain P (2000) Pharmacologie. In: Les médicaments. CdM édition, p. 344Google Scholar
  4. 4.
    Assane M, Baba MR, Bassene E, Sere A (1993) Étude de l’action antihypertensive des graines de Parkia biglobosa (Jacq). Beth chez le rat. Dakar Med 38: 49–54Google Scholar
  5. 5.
    Barnes PJ (1993) Nitic oxide and airways. Eur Respir J 6: 163–165PubMedGoogle Scholar
  6. 6.
    Belemtougri RG, Mounanga CN, Ouedradraogo Y, Sawadogo L (2001) Effets de l’extrait aqueux total de Lantana camara L. (Verbenaceae) sur la pression artérielle sanguine chez le lapin. Rev Med Pharm Afr 15: 4Google Scholar
  7. 7.
    Boullard B (2001) Dictionnaire: plantes médicinales du monde. Réalités et Croyances. Estem, p. 573Google Scholar
  8. 8.
    Bradley KK, Buxton IL, Bradley ME (1998) Nitric oxide relaxes human myometrium by a cGMP-independent mechanism. Am J Physiol 275: C1668–C1673PubMedGoogle Scholar
  9. 9.
    Caulfield MP (1993) Muscarinic receptors-characterization, coupling and function Pharmacol Ther 58: 319–379Google Scholar
  10. 10.
    Caulfield M, Birdsall MJM (1998) International Union of Pharmacology XVII Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50: 279–290PubMedGoogle Scholar
  11. 11.
    Eglen RM, Reddy H, Watson N, Challis RAJ (1994) Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends Pharmacol Sci 15: 114–119PubMedCrossRefGoogle Scholar
  12. 12.
    Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. Fabes J 9: 619–625Google Scholar
  13. 13.
    Hulme EC, Birdsall NJ, Buckley NC (1990) Muscarinic receptors subtypes. Annu Rev Pharmacol Toxicol 30: 633–673PubMedCrossRefGoogle Scholar
  14. 14.
    Izumi H, Garfield RE (1995) Relaxant effects of nitric oxide and cyclic GMP on pregnant rat uterine longitudinal smooth muscle. Eur J Obstet Gynecol 172: 1577–1584CrossRefGoogle Scholar
  15. 15.
    Kamanyi A, Dongmo AB, Bopelet M (1995) Étude des propriétés hypotensives de l’extrait aqueux et des saponines totales des feuilles de Musanga cecropioides (Cécropiacées) chez le rat. Rev Med Pharm Afr 9: 107–117Google Scholar
  16. 16.
    Kayser O, Arndt SK (2000) Antimicrobial activity of some Ziziphus species used in traditional medicine. Pharmaceutical and Pharmacological Letters, pp. 38–40Google Scholar
  17. 17.
    Kerharo J, Adam JC (1974) La pharmacopée sénégalaise traditionnelle: Plantes médicinales et toxiques. Vigot et Frère, ParisGoogle Scholar
  18. 18.
    Lang RJ (1990) The whole-cell Ca2+ channel current in single smooth muscle cells of guinea-pig ureter. J Physiol 423: 453–473PubMedGoogle Scholar
  19. 19.
    Law MR, Prost CD, Wald NJ (1991) By how does dietary salt reduction lower blood pressure? I/Analysis of observational data among populations, II/Analysis of observational data within populations. Br Med J 302: 811–818CrossRefGoogle Scholar
  20. 20.
    Liang H, Tang M, Liu C, et al. (2004) Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developemental stages. Acta Pharmacol Sin 25(11): 1450–1457PubMedGoogle Scholar
  21. 21.
    Médecine (2000) Tome I. Edilec, pp. 83–87Google Scholar
  22. 22.
    Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathology and pharmacology. Pharmacol Res 43: 109–141Google Scholar
  23. 23.
    Newshome P, Adogu AA, Soos MA, Hales CN (1993) Complement-induced Ca2+influx in cultured fibroblasts is decreased by calcium-channel antagonist nifedipine or by some bivalent inorganic cations. Biochem J 295(3): 773–779Google Scholar
  24. 24.
    Racké K, Matthiesen (2004) The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 17: 191–198CrossRefGoogle Scholar
  25. 25.
    Robert DH, Andriy EB (2003) Muscarinic regulation of cardiac channels Br J Pharmacol 139: 1074–1084CrossRefGoogle Scholar
  26. 26.
    Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M2 and M4 receptor knockout mice: muscarinic receptor function. Pharmacol Exp Ther 292: 877–885Google Scholar
  27. 27.
    Traore A, Datte YJ, Offoumou AM, et al. (1999) Effets antihypertensifs de l’extrait aqueux de Jatropha gossypiifolia Linn. (Euphorbiacées) sur la pression artérielle de mammifères. Rev Med Pharm Afr 13: 41–48Google Scholar
  28. 28.
    Uchiyama T, Chess-William R (2004) Muscarinic receptor subtypes of the bladder and gastroin testinal tract. J Smooth Muscle Res 40(6): 237–247PubMedCrossRefGoogle Scholar
  29. 29.
    Varon J, Marik PE (2003) Clinical review: The management of hypertensive crises. Crit Care 7(5): 374–384PubMedCrossRefGoogle Scholar
  30. 30.
    Yawo H (1990) Voltage-activated calcium currents in presynaptic nerve terminals of the chicken ciliary ganglion. J Physiol 428: 199–213PubMedGoogle Scholar

Copyright information

© Springer Verlag 2008

Authors and Affiliations

  • A. Koffi
    • 2
  • F. Traore
    • 1
  • A. L. Adjoungoua
    • 2
  • F. Diafouka
    • 3
  1. 1.Laboratoire de physiologie animale, UFR biosciencesuniversité d’Abidjan-CocodyAbidjan 22Côte d’Ivoire
  2. 2.Laboratoire de pharmacognosie, UFR des sciences pharmaceutiques et biologiquesuniversité d’Abidjan-CocodyAbidjan 01Côte d’Ivoire
  3. 3.Laboratoire de biochimie et biologie de la reproduction, UFR des sciences pharmaceutiques et biologiquesuniversité d’Abidjan-CocodyAbidjan 01Côte d’Ivoire

Personalised recommendations