Advertisement

Phytothérapie

, Volume 5, Issue 3, pp 121–128 | Cite as

Les lignanes phytoestrogènes du lin sont-ils des bienfaiteurs méconnus?

  • E. Lainé
  • C. Hano
  • F. Lamblin
Article original Pharmacognosie

Résumé

Les graines du lin contiennent des teneurs très élevées en composés phénoliques, les lignanes, en particulier en sécoisolaricirésinol diglucoside (SDG). Ses propriétés antioxydantes et de liaison aux récepteurs oestrogéniques pourraient expliquer ses activités biologiques en rapport avec la prévention de certains cancers et des maladies cardiovasculaires. On observe cependant des résultats contradictoires parmi les études épidémiologiques publiées à ce jour. Toutefois, malgré la qualification de phytoestrogène du SDG, il n’a jamais été observé de stimulation de croissance de cellules cancéreuses. La connaissance du devenir des lignanes ingérés et de leurs interactions possibles avec notre métabolisme, en particulier hormonal, progresse. La récente disponibilité de produit purifié permet maintenant d’en étudier les effets in vitro.

Mots clés

Lignane Lin Linum usitatissimum Phytoestrogène Antioxydant 

Do flax lignans have misknown benefits?

Abstract

Linseed contains an high lignan content, peculiarly secoisolariciresinol diglucoside (SDG). Antioxydant properties as well as it’s ability to bind estrogen receptors could explain its biological activities and preventive action against cancers and cardiovascular disease. Epidemiological studies have yielded contradictory results on the benefits of SDG. Nevertheless it is worth to note that, although classified as phyoestrogen, no detrimental effect of SDG (such as tumorous cell growth stimulation) has been observed. Our knowledge is increasing in the field of lignan intake and metabolism and further interaction with our metabolism, particularly the sexual hormones one. The recent availability of purified products now allows in vitro studies to better understand the biological activities of lignans.

Keywords

Lignan Flax Linum usitatissimum Phytoestrogen Antioxydant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Adlercreutz H, Fotsis T, Heikkinen R, et al. (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet 8311: 1295–1299CrossRefGoogle Scholar
  2. 2.
    Adlercreutz H, Bannwart C, Wahala K, et al. (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44: 147–153PubMedCrossRefGoogle Scholar
  3. 3.
    Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoes-trogens in obesity and diabetes. Am J Clin Nutr 76(6): 1191–1201PubMedGoogle Scholar
  4. 4.
    Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol 94(5): 461–467PubMedCrossRefGoogle Scholar
  5. 5.
    Bylund A, Saarinen N, Zhang JX, et al. (2005) Anticancer effects of a plant lignan 7-hydroxymatairesinol on a prostate cancer model in vivo. Exp Biol Med (Maywood) 230(3): 217–223Google Scholar
  6. 6.
    Chen J, Thompson LU (2003) Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion, and migration in vitro. Br Can Res and Treat 80: 163–170CrossRefGoogle Scholar
  7. 7.
    Chen J, Tan KP, Ward WE, et al. (2003) Exposure to flaxseed or its purified lignan during suckling inhibits chemically induced rat mammary tumorigenesis. Exp Biol Med (Maywood) 228: 951–958Google Scholar
  8. 8.
    Clark WF, Muir AD, Westcott ND, et al. (2000) A novel treatment for lupus nephritis: lignan precursor derived from flax. Lupus 9(6): 429–436PubMedCrossRefGoogle Scholar
  9. 9.
    Craigo J, Callahan M, Huang RC, et al. (2000) Inhibition of human papillomavirus type 16 gene expression by nordihydroguaiaretic acid plant lignan derivatives. Antiviral Res 47(1): 19–28PubMedCrossRefGoogle Scholar
  10. 10.
    Danbara N, Yuri T, Tsujita-Kyutoku M, et al. (2005) Enterolactone induces apoptosis and inhibits growth of Colo 201 human colon cancer cells both in vitro and in vivo. Anticancer Res 25(3B): 2269–2276PubMedGoogle Scholar
  11. 11.
    Demark-Wahnefried W, Price DT, Polascik TJ, et al. (2001) Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgery: exploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. Urology 58: 47–52PubMedCrossRefGoogle Scholar
  12. 12.
    Demark-Wahnefried W, Robertson CN, Walther PJ, et al. (2004) Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology 63: 900–904PubMedCrossRefGoogle Scholar
  13. 13.
    Goodnough JB (2005) Antitumorigenic Effects of Flaxseed and Its Lignan, Secoisolariciresinol Diglycoside (SDG) 10 (1) Nutrition Bytes Article 4Google Scholar
  14. 14.
    Ingram D, Sanders K, Kolybaba M, et al. (1997) Case control study of phyto-oestrogens and breast cancer. Lancet 350: 990–994PubMedCrossRefGoogle Scholar
  15. 15.
    Kilkkinen A, Virtamo J, Virtanen MJ, et al. (2003) Serum enterolactone concentration is not associated with prostate cancer risk in a nested case-control study. Cancer Epidemiol Biomarkers Prev 12(11 Pt 1): 1209–1212PubMedGoogle Scholar
  16. 16.
    Kilkkinen A, Virtamo J, Vartiainen E, et al. (2004) Serum enterolactone concentration is not associated with breast cancer risk in a nested case-control study. Int J Cancer 108(2): 277–280PubMedCrossRefGoogle Scholar
  17. 17.
    Kilkkinen A, Erlund I, Virtanen MJ, et al. (2006) Serum enterolactone concentration and the risk of coronary heart disease in a case-cohort study of Finnish male smokers. Am J Epidemiol 15 163(8): 687–693CrossRefGoogle Scholar
  18. 18.
    Kitts DD, Yuan YV, Wijewickreme AN, et al. (1999) Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202: 91–100PubMedCrossRefGoogle Scholar
  19. 19.
    Kuijsten A, Arts IC, van’t Veer P, et al. (2005) The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J Nutr 135(12): 2812–2816PubMedGoogle Scholar
  20. 20.
    Kuijsten A, Arts IC, Vree TB, et al. (2005) Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr 135(4): 795–801PubMedGoogle Scholar
  21. 21.
    Li D, Yee JA, Thompson LU, et al. (1999) Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice. Cancer Lett 142: 91–96PubMedCrossRefGoogle Scholar
  22. 22.
    Magee PJ, McGlynn H, Rowland IR (2004) Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett 208: 35–41PubMedCrossRefGoogle Scholar
  23. 23.
    McCann SE, Kulkarni S, Trevisan M, et al. (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99: 309–311PubMedCrossRefGoogle Scholar
  24. 24.
    Martin ME, Haourigui M, Pelissero C, et al. (1996) Interactions between phytoestrogens and human sex steroid binding protein. Life Sci 58(5): 429–436PubMedCrossRefGoogle Scholar
  25. 25.
    Muir AD (2006) Flax lignans-analytical methods and how they influence our lunderstanding of biological activity. J AOAC Int J 89(4): 1147–1157Google Scholar
  26. 26.
    Olsen A, Knudsen KE, Thomsen BL, et al. (2004) Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 13(12): 2084–2089PubMedGoogle Scholar
  27. 27.
    Oomah BD (2001). Flaxseed as a functional food source. J Sci Food Agric 81: 889–894CrossRefGoogle Scholar
  28. 28.
    Pietinen P, Stumpf K, Mannisto S, et al. (2001) Serum enterolactone and risk of breast cancer: a case-control study in eastern Finland. Cancer Epidemiol Biomarkers Prev 10(4): 339–344PubMedGoogle Scholar
  29. 29.
    Pool-Zobel BL, Adlercreutz H, Glei M, et al. (2000) Isoflavonoids and lignans have different potentials to modulate oxidative genetic damage in human colon cells. Carcinogenesis 21: 1247–1252PubMedCrossRefGoogle Scholar
  30. 30.
    Prasad K (1997) Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside isolated from flax-seed. Mol Cell Biochem 168: 117–123PubMedCrossRefGoogle Scholar
  31. 31.
    Prasad K (1999) Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 99: 1355–1362PubMedGoogle Scholar
  32. 32.
    Prasad K (2000) Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 209: 89–96PubMedCrossRefGoogle Scholar
  33. 33.
    Rajesha J, Murthy KN, Kumar MK, et al. (2006) Antioxidant potentials of flaxseed by in vivo model. J Agric Food Chem 31 54(11): 3794–3799CrossRefGoogle Scholar
  34. 34.
    Renault B, Catroux P (2003) The use of lignans for preventing or treating the signs of ageing of the skin. Brevet mondial déposé par L’Oréal. WO2004/010965Google Scholar
  35. 35.
    Renault B, Catroux P (2003) Cosmetic use of lignans. Brevet mondial déposé par L’Oréal. WO2004/012697Google Scholar
  36. 36.
    Saarinen NM, Huovinen R, Warri A, et al. (2002) Enterolactone inhibits the growth of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in the rat. Mol Cancer Ther 1: 869–876PubMedGoogle Scholar
  37. 37.
    Schottner M, Spiteller G (1998) Lignans interfering with 5alpha-dihydrotestosterone binding to human sex hormone-binding globulin. J Nat Prod 61: 119–121PubMedCrossRefGoogle Scholar
  38. 38.
    Shashi B, Jaswant S, Madhusudana RJ, et al. (2006) A novel lignan composition from Cedrus deodara induces apoptosis and early nitric oxide generation in human leukemia Molt-4 and HL-60 cells. Nitric Oxide 14(1): 72–88PubMedCrossRefGoogle Scholar
  39. 39.
    Smith AY, Feddersen RM, Gardner KD Jr, et al. (1994) Cystic renal cell carcinoma and acquired renal cystic disease associated with consumption of chaparral tea: a case report. J. Urol 152: 2089–2091PubMedGoogle Scholar
  40. 40.
    Spence JD, Thornton T, Muir AD, et al. (2003) The effect of flax seed cultivars with differing content of alpha-linolenic acid and lignans on responses to mental stress. J Am Coll Nutr 22(6): 494–501PubMedGoogle Scholar
  41. 41.
    Stattin P, Bylund A, Biessy C, et al. (2004) Prospective study of plasma enterolactone and prostate cancer risk (Sweden). Cancer Causes Control 15(10): 1095–1102PubMedCrossRefGoogle Scholar
  42. 42.
    Tan KP, Chen J, Ward WE, et al. (2004) Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp Biol Med (Maywood) 229: 147–157Google Scholar
  43. 43.
    Vanharanta M, Voutilainen S, Lakka TA, et al. (1999) Risk of acute coronary events according to serum concentrations of enterolactone: a prospective population-based case-control study. Lancet 9196: 2112–2115CrossRefGoogle Scholar
  44. 44.
    Vanharanta M, Voutilainen S, Rissanen TH, et al. (2003). Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch Intern Med 163(9): 1099–1104PubMedCrossRefGoogle Scholar
  45. 45.
    Van der Schouw YT, Sampson L, Willett WC, et al. (2005) The usual intake of lignans but not that of isoflavones may be related to cardiovascular risk factors in US men. J Nutr 135(2): 260–266PubMedGoogle Scholar
  46. 46.
    Whitten PL, Patisaul HB (2001) Cross-species and interassay comparisons of phytoestrogen action. Environ Health Perspect 109: 5–20PubMedCrossRefGoogle Scholar
  47. 47.
    Zeleniuch-Jacquotte A, Adlercreutz H, Manepere lin auteur et al. (2004) Circulating enterolactone and risk of breast cancer: a prospective study in New York. Br J Cancer 5 91(1): 99–105CrossRefGoogle Scholar
  48. 48.
    Zeleniuch-Jacquotte A, Lundin E, Micheli A, et al. (2006) Circulating enterolactone and risk of endometrial cancer. Int J Cancer 15 119(10): 2376–2381CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Enseignants chercheurs de l’université d’Orléans. Unité EA 1207 Biologie des ligneux et grandes culturesAntenne scientifique universitaire de ChartresChartresFrance

Personalised recommendations