Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber

  • Kazunori Mukasa
  • Katsunori Imamura
  • Iwao Shimotakahara
  • Takeshi Yagi
  • Kunio Kokura
Article

Abstract

This paper gives an overview of IDF/RDF fiber design and development for submarine system. It starts with the concept of dispersion management line and its difference from the conventional DCF used in a module. Then it reviews the fiber design details and optical properties of various types of fibers used as parts of dispersion management lines. Fiber splicing issues using MFD expanding method and a brief summary of transmission experiments using the dispersion management lines are also included. Finally, we discussed a medial dispersion alternative comprising a positive and negative medial dispersion fiber and future optical properties improvements possibilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Oda, M. Fukutoku, H. Toba, and T. Kominato, "128 channel, 480 km FSK-DD transmission experiment using 0.98 mm pumped erbium-doped fiber amplifiers and tunable gain equalizer'' IEE Electron. Lett. 30, 982-983 (1994).CrossRefGoogle Scholar
  2. K. Sekine, N. Kikuchi, S. Sasaki, and M. Aoki, "10 Gb/s four-channel WDM transmission experiment over 500 km with technique for suppressing four-wave mixing'' IEE Electron. Lett. 30, 1150-1151 (1994).CrossRefGoogle Scholar
  3. R.B. Kummer, L.R. Dunn, R.E. Fangmann, A.F. Judy, D. Kalish, D.W. Peckham, R.G. Huff, W.A. Reed, A.M. Vengsarkar, K.L. Walker, A.R. Chraplyvy, L. Clark, R. Tkach, and J.J. Thomas, "Fiber design for future high capacity digital transmission'' IWCS Proceeding, p. 42 (1995)Google Scholar
  4. S. Yoshida, S. Kuwano, and K. Iwashita, "Gain-flattened EDFA with high Al concentration for multistage repeatered WDM transmission'' Electron. Lett. 31 (20), 1765-1767 (1995).CrossRefGoogle Scholar
  5. A.R. Shraplyvy, A.H. Gnuck, R.W. Tkach, and R.M. Derosier, "8 × 10 Gb/s transmission through 280km of dispersion-managed fiber'' IEEE Photon. Technol. Lett. 5, 1232-1235 (1993).Google Scholar
  6. A. Bertaina, S. Bigo, C. Francia, S. Gauchard, J.P. Hamaide, and M.W. Chbat, "Experimental investigation of Dispersion Management for an 8 × 10 Gb/s WDM transmission system over nonzero dispersion-shifted fiber'' IEEE Photon. Technol. Lett. 11, 1045-1047 (1999).CrossRefGoogle Scholar
  7. K. Mukasa, Y. Akasaka, Y. Suzuki, and T. Kamiya, " Novel network fiber to manage dispersion at 1.55 μm with combination of 1.3 mm zero dispersion single mode fiber'' ECOC'97 Proceeding, Mo3C-127 (1997).Google Scholar
  8. M. Onishi, C. Fukuda, Y. Koyano, M. Shigematsu, and H. Kanamori, "Dispersion compensating fiber with a figure of merit of 273 ps/nm/dB and its compact package,'' OEC'94 Technical Digest, 14B1-3 (1994).Google Scholar
  9. Y. Akasaka, R. Sugizaki, A. Umeda, I. Oshima, and K. Kokura, "Dispersion-compensating fiber with W-shaped profile'' OFC'95 Technical Digest, ThH3 (1995).Google Scholar
  10. Y. Akasaka, R. Sugizaki, and T. Kamiya, "Dispersion-compensating technique of 1300 nm zero-dispersion SMF to get flat dispersion at 1550 nm range'' ECOC'95 Proceeding, We.B.2.4 (1995).Google Scholar
  11. M. Onishi, H. Kanamori, T. Kato, and M. Nishimura, "Optimization of dispersion-compensating fibers considering self-phase modulation suppression'' OFC'96 Technical Digest, ThA2 (1996).Google Scholar
  12. R. Sugizaki, Y. Akasaka, S. Arai, K. Furukawa, Y. Suzuki, T. Kamiya, and H. Hondo, "High-reliability dispersion compensator using negative slope DCF'' IWCS'96 Proceeding, pp.888-891 (1996).Google Scholar
  13. L.G. Nielsen, T. Veng, S.N. Knudsen, C.C. Larsen, and B. Edvold, "New dispersion compensating fiber for simultaneous compensation of dispersion and dispersion slope of non-zero dispersion shifted fibers in C or L band'' OFC'00 Technical Digest, TuG6 (2000).Google Scholar
  14. R. Sugizaki, K. Mukasa, A.Umeda, and Y. Suzuki, "Dispersion slope compensating fibers for L-Band WDM system using NZ-DSF'' OFC'00 Technical Digest, TuG4 (2000).Google Scholar
  15. T. Kato, M. Hirano, K. Fukuda, A. Tada, M. Onishi, and M. Nishimura, "Design optimization of dispersion compensating fiber for NZ-DSF considering nonlinearity and packaging performance'' OFC'01 Technical Digest, TuS6 (2001).Google Scholar
  16. H. Kanamori, H. Tokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, and S. Tanaka, "Transmission characteristics and reliability of Pure-silica-core single-mode fibers'' J. Lightwave Technol. LT-4 (8), 1144-1150 (1986).ADSCrossRefGoogle Scholar
  17. M. Murakami, T. Matsuda, H. Maeda, and T. Imai, "Long-haul WDM transmission using higher order fiber dispersion management'' J. Lightwave Technol. 18 (9), 1197-1204 (2000).CrossRefADSGoogle Scholar
  18. K. Yonenaga, A. Matsuura, S. Kuwahara, M. Yoneyama, Y. Miyamoto, and K. Hagimoto, "Dispersion-compensation-free 40 Gb/s × 4-channel WDM transmission experiment using zero-dispersion-flattened transmission line'' OFC'98 Technical Digest, PD20 (1998).Google Scholar
  19. M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, "Development of dispersion compensation fiber cable using Reverse Dispersion Fiber'' APCC/OECC'99 Proceeding, C6.8, pp.1590-1593 (1999).Google Scholar
  20. M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, "Study on mechanical and optical characteristics of Reverse Dispersion Fiber cable'' IWCS'99 Proceeding , Track 2, p. 51 (1999)Google Scholar
  21. T. Naito, N. Shimojo, T. Tanaka, H. Nakamoto, M. Doi, T. Ueki, and M. Suyama, "1 Terabit/s WDM transmission over 10,000 km,'' ECOC'99 Post-deadline papers, PD2-1 (1999).Google Scholar
  22. T. Tsuritani, N. Takeda, K. Imai, K. Tanaka, A. Agata, I. Morita, H. Yamauchi, N. Edagawa, and M. Suzuki, "1 Terabit/s (100 × 10.7 Gbit/s) transoceanic transmission using 30-nm-wide broadband optical repeaters with Aeff-enlarged positive dispersion fiber and slope-compensating DCF,'' ECOC'99, Post-deadline papers, PD2-8 (1999).Google Scholar
  23. K. Mukasa, T. Yagi, and K. Kokura, "New type of dispersion management transmission line for long-haul high-capacity transmission'' SubOptic'01 Proceeding, T.4.2.4 (2001).Google Scholar
  24. S.N. Knudsen, D. W.Peckham, M.O. Pedersen, D. Philen, T. Veng, L.R. Pritchett, and L.G. Nielsen, "New dispersion-slope managed fiber pairs for undersea fiber optic transmission system'' SubOptic'01 Proceeding, T.4.2.2 (2001).Google Scholar
  25. K. Mukasa, M. Kawasaki, and T. Yagi, "RDF with attenuation as low as 0.205 dB/km'' ECOC'03 Proceeding, 4.7.2 (2003).Google Scholar
  26. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, "Ultra low loss (0.1488 dB/km) pure silica core fiber and extension of transmission distance'' Electron. Lett. 38 (20), 1168-1169 (2002). CrossRefGoogle Scholar
  27. C.D. Poole, R.W. Tkach, A.R. Chraplyvy, and D.A. Fishman, "Fading in lightwave systems due to polarization-mode dispersion'' IEEE Photon. Technol. Lett. 3 (1), 68-70 (1991).CrossRefGoogle Scholar
  28. F. Bruyere, "Impact of first- and second-order PMD in optical digital transmission systems'' Opt. Fiber Technol. 2 (3), 269-280 (1996).CrossRefADSGoogle Scholar
  29. M.O. Pedersen, S.N. Knudsen, T. Geisler, T. Veng, and L.-G. Nielsen, "New low-loss inverse dispersion fiber for dispersion matched fiber sets,'' ECOC'02 Proceeding, 5.1.3 (2002).Google Scholar
  30. K. Mukasa and T. Yagi, "Dispersion flat and low nonlinear optical link with new type of Reverse Dispersion Fiber (RDF-60)'' OFC'01 Technical Digest, TuH7 (2001).Google Scholar
  31. H. Sugahara, K. Fukuchi, A. Tanaka, Y. Inada, and T. Ono, "6,050km transmission of 32 × 42.7 Gb/s DWDM signals using Raman-amplified quadruple-hybrid span onfiguration'' OFC'02 Post-deadline paper, FC6 (2002).Google Scholar
  32. S.N. Knudsen and T. Veng, "Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber,'' OFC'00 Technical Digest, TuG5 (2000).Google Scholar
  33. T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, and T. Ono,''6.4 Tb/s (160 × 40 Gb/s)WDM transmission experiment with 0.8 bit/s/Hz spectral efficiency'' ECOC'00 Post-deadline papers, PD-1.1 (2000).Google Scholar
  34. Y. Kobayashi, K. Kinjo, K. Ishida, T. Sugihara, S. Kajiya, N. Suzuki, and K. Shimizu, "A comparison among PURE-RZ, CS-RZ and SSB-RZ format, in 1 Tbit/s (50 × 20 Gbit/s, 0.4 nm spacing)WDM transmission over 4,000 km'' ECOC'00 Post-deadline papers, PD-1.7 (2000).Google Scholar
  35. M. Nakazawa, T. Yamamoto, and K.R. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator,'' ECOC'00 Post-deadline papers, PD-2.6 (2000).Google Scholar
  36. I. Yokota, A. Sugiyama, H. Ogiwara, S. Yoshizawa, H. Iwata, H. Isono, T. Tanaka, T. Naito, and M. Suyama "10-Gb/s, 64-ch, WDM 12,000-km transmission experiment using VIPA variable dispersion compensator,'' OECC'00 Post-deadline papers, PD-1.6 (2000).Google Scholar
  37. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasawara, and T. Ono, "10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment'' OFC'01 Post-deadline Paper, PD24 (2001).Google Scholar
  38. K. Shimizu, K. Ishida, K. Kinjo, T. Kobayashi, S. Kajiya, T. Tokura, T. Kogure, K. Motoshima, and T. Mizuochi, "65 × 22.8 Gb/s WDM transmission over 8,398Km employing symmetrically collided transmission with Aeff managed fiber,'' OFC'02 Technical Digest, WX4 (2002).Google Scholar
  39. Y. Zhu, I. Hardcastle, W.S. Lee, C.R.S. Fludger, C. Li, D. Qiao, H. Sun, K.T. Wu, and J. McNicol, "Experimental comparison of dispersion-managed fiber type in a 16-channel, 40-Gb/s, 500-km (6 × 84.5km) Raman-assisted transmission link,'' OFC'02 Technical Digest, ThX4 (2002).Google Scholar
  40. S. Ten, M. Sauer, E. Kolltveit, J. Hurley, D. Dalgoutte, J. Ferner, S. Colby, and D. Witzel, "1.6-Tb/s (40 × 40 Gb/s) transmission over 1200 km of field deployed dispersion managed fiber,'' OFC'03 Technical Digest, TuS3 (2003).Google Scholar
  41. G.C. Gupta, L.L. Wang, O. Mizuhara, R.E. Tench, NN. Dang, P. Tabaddor, and A. Judy, "3.2-Tb/s (40 ch. × 80 Gb/s) transmission with spectral efficiency of 0.8 b/s/Hz over 21 × 100 km of dispersion managed high local dispersion fiber using all-Raman amplified span'' IEEE Photon. Technol. Lett. 15 (7), 996-998 (2003).CrossRefGoogle Scholar
  42. T. Tsuritani, K. Ishida, A. Agata, K .Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizouchi, N. Edagawa, and S. Akiba, "70 GHz-spaced 40 × 42.7 Gb/s Transpacific Transmission over 9400 km using prefiltered CSRZ-DPSK signals, all-Raman repeater, and symmetrically dispersion-managed fiber spans'' J. Lightwave Technol. 22 (1), 215-223 (2004).Google Scholar
  43. K. Mukasa, T. Yagi, and K. Kokura, "Wide-band dispersion management transmission line with Medial Dispersion Fiber (MDF),'' ECOC'00 Proceeding, 2-4-2 (2000).Google Scholar
  44. K. Mukasa, T. Yagi, and K. Kokura, "Wide-band transmission line with low-loss Negative Medial Dispersion Fiber (N-MDF),'' OECC'01 Technical Digest, THA3 (2001).Google Scholar
  45. Y. Inada, T. Ito, K. Mino, R. Yokoyama, Y. Hara, K. Fukuchi, T. Ogata, and Y. Aoki, "Error-free transmission over 6,000 km of 50 × 42.8 Gb/s, FEC-coded CS-RZ WDM signal in EDFA and Medial-Dispersion MDF systems,'' ECOC'04 Proceeding, Th3.5.4 (2004).Google Scholar
  46. K. Mukasa, H. Moridaira, T. Yagi and K. Kokura, "New type of dispersion management transmission line with MDFSD for long-haul 40 Gb/s transmission,'' OFC'02 Technical Digest, TuGG2 (2002).Google Scholar
  47. K. Mukasa, T. Yagi, and K. Kokura, ''New type of dispersion management line consisted of MDFEA with Aeff about 90 μm2 and dispersion slope as low as 0.002 ps/nm2/km,'' ECOC'02 Proceeding, 5.1.2 (2002).Google Scholar
  48. S. Matsuo, S. Tanigawa, K. Himeno, and K. Harada, "New medium-dispersion fiber with large effective area and low dispersion slope,'' OFC'02 Technical Digest, WU2 (2002).Google Scholar
  49. K. Imamura, K. Mukasa, and T.Yagi "Positive-Medial Dispersion Fiber of ring-core profile with attenuation as low as 0.210 dB/km and Aeff about 125 μm2,'' OFC'04 Technical Digest, TUB6 (2004).Google Scholar
  50. K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibres,'' ECOC'03 Post-deadline papers, Th4.1.6 (2003).Google Scholar
  51. B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R Flea, and H. Sabert, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber,'' OFC'04 Post-deadline papers, PDP24 (2004).Google Scholar
  52. M. Tsukitani, M. Matsui, K. Nagayama, and E. Sawada "Ultra low nonlinearity pure-silica-core fiber with an effective area of 211 μm2 and transmission loss of 0.159 dB/km,'' ECOC'02 Proceeding, 3.2.2 (2002)Google Scholar
  53. L.-G. Nielsen, D. Peckham, R. Lingle, and O.A. Levring, "Dispersion managed fibre span optimized for submarine links,'' SubOptic'04 Proceeding, ThB 1.2 (2004).Google Scholar
  54. K. Mukasa, K. Imamura, and T.Yagi "New type of Positive Medial Dispersion Fiber (P-MDF150 with dispersion as 10 ps/nm/km and Aeff about 150 μ m2,'' OFC'03 Technical Digest, TuB1 (2003).Google Scholar
  55. K. Mukasa, K. Imamura, and T. Yagi, "Dispersion management transmission line consisted of Medial dispersion fiber (MDF),'' ECOC'04 Proceeding, We3.3.3 (2004). Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kazunori Mukasa
    • 1
  • Katsunori Imamura
    • 1
  • Iwao Shimotakahara
    • 1
  • Takeshi Yagi
    • 1
  • Kunio Kokura
    • 1
  1. 1.Furukawa Electric Co., Ltd. Fitel-Photonics Laboratory\\ 6, Yawata-Kaigandori, IchiharaChiba 290-8555Japan

Personalised recommendations