Optical signal processing using nonlinear fibers

Article

Abstract

Ultra-fast optical signal processing is a promising technology for future photonic networks. This paper describes possible applications of nonlinear fibers to optical signal processing. The third-order optical nonlinearities in a fiber are discussed by analyzing the interaction of co-propagating optical waves. The properties of a nonlinear fiber are then considered in terms of optimizing the dispersion for achieving phase matching and decreasing walk-off. A highly nonlinear fiber (HNLF) is a practical candidate for an ultra-high-speed signal processor. Using HNLF, the following experiments are successfully demonstated: ultra-broadband wavelength conversion/optical phase conjugation by four-wave mixing, 160 Gb/s optical 3R-regeneration, and optical switching up to 640 Gb/s using a parametric amplified fiber switch. Steps for further improvements are also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.E. Stubkjaer, Semiconductor optical amplifier-based all-optical gates for high-speed optical processing, IEEE J. Select. Top. Quantum Electron., 6, 1428-1435 (2000).CrossRefGoogle Scholar
  2. S.J.B. Yoo, Wavelength conversion technologies for WDM network applications, J. Lightwave Technol., 14, 955-966 (1996).CrossRefADSGoogle Scholar
  3. S. Watanabe and F. Futami, All-optical signal processing using highly-nonlinear optical fibers, IEICE Trans., E84-B, 1179-1189 (2001).Google Scholar
  4. S. Watanabe and F. Futami, All-optical wavelength conversion using ultra-fast nonlinearities in optical fiber, IEICE Trans., E85-C, 889-895 (2002).Google Scholar
  5. S. Watanabe, S. Takeda, G. Ishikawa, H. Ooi, J.G. Nielsen, and C. Sonne, Simultaneous wavelength conversion and optical phase conjugation of 200 Gb/s (5 x 40 Gb/s) WDM signal using a highly nonlinear fiber four-wave mixer, Proc. Integrated Optics and Optical Fiber Communications/24th European Conference on Optical Communications (IOOC/ECOC'97) at Edinburgh, UK, September 1997, Post-deadline Paper TH3A, pp.1-4.Google Scholar
  6. S. Watanabe, S. Takeda, and T. Chikama, Interband wavelength conversion of 320 Gb/s (32 x 10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer, Proc. 24th European Conference on Optical Communications (ECOC'98) at Madrid, Spain, September 1998, Post-deadline paper, p. 85.Google Scholar
  7. S. Nakamura, Y. Ueno, and K. Tajima, 168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch, Photon. Technol. Lett., 13, 1091-1093 (2001).CrossRefGoogle Scholar
  8. J. Yu and P. Jeppesen, 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering, IEEE Photon. Technol. Lett., 13, 833-835 (2001).CrossRefGoogle Scholar
  9. U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H.G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, 160 Gbit/s transmission over 116 km field-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM, Electron. Lett., 37, 443-445 (2001).CrossRefGoogle Scholar
  10. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, K. Mori, 3 Tbit/s (160 Gbit/s x 19 channel) optical TDM and WDM transmission experiment, Electron. Lett., 35, 826-827 (1999).CrossRefGoogle Scholar
  11. M. Nakazawa, T. Yamamoto, and K. R. Tamura, 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator, Electron. Lett., 36, 2027-2029 (2000).CrossRefGoogle Scholar
  12. M. Jinno, Effects of group velocity dispersion on self/cross phase modulation in a nonlinear Sagnac interferometer switch, J. Lightwave Technol., 10, 1167-1178 (1992).CrossRefADSGoogle Scholar
  13. J.K. Lucek and K. Smith, All-optical signal regenerator, Opt. Lett., 18, 1226-1228 (1993).ADSGoogle Scholar
  14. J.C. Simon, L. Billes, A. Dupas, and L. Bramerie, All optical regeneration techniques, Proc. 25th European Conference on Optical Communication (ECOC'99) at Nice, France, 1999, II, pp. 256-257.Google Scholar
  15. B. Sartorius, All-optical 3R signal regeneration, Proc. 26th European Conference on Optical Communication (ECOC2000) at Munich, Germany, September 2000, Paper 9.4.1, pp. 293-294.Google Scholar
  16. H. Yokoyama, H. Kurita, T. Shimizu, I. Ogura, Y. Hashimoto, R. Kuribayashi, M. Shirane, and H. Yamada, All-optical clock extraction and signal regeneration with mode-locked laser diodes, Proc. 7th International Workshop on Femtosecond Technology (FST 2000) at Tukuba, Japan, June 30, 2000, p. 71.Google Scholar
  17. B. Sartorius, C. Bornholdt, S. Bauer, M. Moehrle, P. Brindel, and O. Leclerc, System application of 40 GHz all-optical clock in a 40 Gbit/s optical 3R regenerator, Proc. Optical Fiber Communication Conference (OFC 2000) at Baltimore, USA, 2000, Paper PD11.Google Scholar
  18. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, 40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in a SOA-based all-active Mach-Zehnder interferometer, IEEE Photon. Technol. Lett., 12, 332-334 (2000).CrossRefGoogle Scholar
  19. A.E. Kelly, I.D. Phillips, R.J. Manning, A.D. Ellis, D. Nesset, D.G. Moodie, and R. Kashyap, 80 Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer, Electron. Lett., 35, 1477-1478 (1999).CrossRefGoogle Scholar
  20. Y. Ueno, S. Nakamura, and K. Tajima, Penalty-free error-free all-optical data pulse regeneration at 84 Gbps with Symmetric-Mach-Zehnder-type regenerator, Proc. Optical Fiber Communication Conference (OFC 2001) at Anaheim, CA, USA, 2001, Paper MG5-1.Google Scholar
  21. T. Otani, T. Miyazaki, and S. Yamamoto, Optical 3R regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications, IEEE Photon. Technol. Lett., 12, 431-433 (2000).CrossRefGoogle Scholar
  22. M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, 10 Gbit/s soliton data transmission over million kilometers, Electron. Lett., 27, 1270-1272 (1991).Google Scholar
  23. S. Bigo, O. Leclerc, and E. Desurvire, All-optical fiber signal processing and regeneration for Soliton communications, IEEE J. Select. Top. Quantum Electron., 3, 1208-1223 (1997).CrossRefGoogle Scholar
  24. R. Ludwig, C. Schubert, S. Watanabe, F. Futami, C. Schmidt, J. Berger, C. Boerner, S. Ferber, and H. G. Weber, 160 Gbit/s 3R-regenerating wavelength converter, Proc. 7th Opto-Electronics and Communications Conference (OECC'02) at Yokohama, Japan, 2002, Post-deadline paper, PD1-3.Google Scholar
  25. S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H.G. Weber, 160 Gbit/s Optical 3R-Regenerator in A Fiber Transmission Experiment, Proc. Optical Fiber Communication Conference (OFC2003) at Atlanta, Georgia, USA, March 2003, Post-deadline Paper, PD16.Google Scholar
  26. S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. Schmidt-Langhorst, J. Berger, and H.G. Weber, Ultrafast all-optical 3R-regeneration, IEICE Trans., E87-C, 1114-1118 (2004).Google Scholar
  27. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing, Electron. Lett., 36, 2089-2090 (2000).CrossRefGoogle Scholar
  28. F. Futami, S. Watanabe, and T. Chikama, Simultaneous recovery of 20 x 20 GHz WDM optical clocks using supercontinuum in a nonlinear fiber: Proc. 26th European Conference on Optical Communication (ECOC2000) at Munich, Germany, September 2000, Post-deadline paper 2.8.Google Scholar
  29. F. Futami and S. Watanabe, All-optical data addition to a time slot in 160-Gb/s OTDM signal using wavelength conversion by supercontinuum generation: Proc. 27th European Conference on Optical Communication (ECOC2001) at Amsterdam, Netherlands, September 2001, Paper WeB2, pp.306-307.Google Scholar
  30. C. Schmidt, F. Futami, S. Watanabe, T. Yamamoto, C. Schubert, J. Berger, M. Kroh, H.-J. Ehrke, E. Dietrich, C. Boerner, R. Ludwig, and H.G. Weber, Optical Q-factor monitoring at 160 Gb/s using an optical sampling system in an 80 km transmission experiment, Proc. Conference on Lasers and Electro-Optics (CLEO 2002) at Long Beach, 2002, CThU3.Google Scholar
  31. J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen: 300 Gbit/s eye-diagram measurement by optical sampling using fiber based parametric amplification, Proc. Optical Fiber Communication Conference (OFC2001) at Anaheim, CA, 2001, Post-deadline paper.Google Scholar
  32. N. Yamada, N. Banjo, H. Ohta, S. Nogiwa, and Y. Yanagisawa, 320-Gb/s eye diagram measurement by optical sampling system using a passively mode-locked fiber laser, Proc. Optical Fiber Communication Conference (OFC2002) at Anaheim, CA, 2002, Paper ThU3.Google Scholar
  33. M. Shirane, Y. Hashimoto, H. Kurita, H. Yamada, and H. Yokoyama, Optical sampling measurement with all-optical clock recovery using mode-locked diode lasers, Proc. Optical Fiber Communication Conference (OFC2001) at Anaheim, CA, 2001, Paper MG2.Google Scholar
  34. H. Takara, S. Kawanishi, A. Yokoo, S. Tomaru, T. Kitoh, and M. Saruwatari, 100 Gbit/s optical signal eye-diagram measurement with optical sampling using organic nonlinear optical crystal, Electron. Lett., 32, 2256-2258 (1996).CrossRefGoogle Scholar
  35. K. Igawa, A. Otani, and Y. Tsuda, Novel Optical Sampling Oscilloscope without traditional trigger technique and measurement of optical short pulse modulated PRBS pattern, Proc. Optical Fiber Communication Conference (OFC 2004) at Los Angeles, 2004, CA, 2004, Paper MF73.Google Scholar
  36. S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber, J. Lightwave Technol., 12, 2139-2146 (1994).CrossRefADSGoogle Scholar
  37. G. P. Agrawal, Nonlinear Fiber Optics, 2nd. ed. (Academic Press, San Francisco, CA, 1995).Google Scholar
  38. K. Inoue, Four-wave mixing in an optical fiber in the zero-dispersion wavelength region, J. Lightwave Technol., 10, 1553-1561 (1992).CrossRefADSGoogle Scholar
  39. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, Highly nonlinear dispersion shifted fiber and its application to broadband wavelength converter, Proc. Integrated Optics and Optical Fiber Communications/24th European Conference on Optical Communications (IOOC/ECOC'97) at Edinburgh, UK, September 1997, Paper TU2C, pp.115-118.Google Scholar
  40. C.D. Poole, and D.L. Favin: Polarization-mode dispersion measurements based on transmission spectra through a polarizer, J. Lightwave Technol., 12, 917-929 (1994).Google Scholar
  41. J.H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T.M. Monro, D.J. Richardson, Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold, IEEE Photon. Technol. Lett., 15, 440-442 (2003).CrossRefGoogle Scholar
  42. R. Hainberger, and S. Watanabe, Wavelength dependence of the nonlinear coefficient of highly nonlinear photonic crystal fibers, 9th Opto-Electronics and Communications Conference/3rd International Conference on Optical Internet (OECC/COIN2004) at Yokohama, Japan, July 2004, Paper 16E1-3.Google Scholar
  43. P. Petropoulos, T.M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R.C. Moore, H.N. Rutt, and D.J. Richardson, Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber, Proc. Optical Fiber Communication Conference (OFC2003) at Atlanta, Georgia, USA, March 2003, Post-deadline paper PD3 Atlanta.Google Scholar
  44. M. Asobe, H. Kobayashi, and H. Itoh, Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber, Opt. Lett., 18, 1056-1058 (1993).ADSCrossRefGoogle Scholar
  45. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1 km-1, Proc. Optical Fiber Communication Conference (OFC 2004) at Los Angeles, 2004, CA, Post-deadline paper PD26.Google Scholar
  46. S. Watanabe and M Shirasaki, Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation, J. Lightwave Technol., 14, 243-248 (1996).CrossRefADSGoogle Scholar
  47. A. Yariv, D. Fekete, and D.M. Pepper, Compensation for channel dispersion by nonlinear optical phase conjugation, Opt. Lett., 4, 52-65 (1979).ADSGoogle Scholar
  48. S. Watanabe, T. Naito and T. Chikama, Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation, IEEE Photon. Technol. Lett., 5, 92-95 (1993).CrossRefGoogle Scholar
  49. S. Watanabe, S. Kaneko, and T. Chikama, Long-haul fiber transmission using optical phase conjugation, Optical Fiber Technologies, 2, 169-178 (1996).Google Scholar
  50. T. Yamamoto, L.K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H.G. Weber, Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier, Electron. Lett., 37, 509-510 (2001).CrossRefGoogle Scholar
  51. O. Kamatani and S. Kawanishi, Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier, IEEE Photon. Technol. Lett., 8, 1094-1096 (1996).CrossRefADSGoogle Scholar
  52. C. Boerner, S. Watanabe, F. Futami, R. Okabe, S. Ferber, C. Schubert, R. Ludwig, C. Schmidt-Langhorst, and H.G. Weber, 160 Gbit/s clock recovery in a 3R-regenerating wavelength converter, Proc. 30th European Conference on Optical Communication (ECOC2004) at Stochholm, Sweden, September 2004, Paper We3.5.6, pp. 440-441.Google Scholar
  53. P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, Proc. 24th European Conference on Optical Communications (ECOC'98) at Madrid, Spain, September 1998, 1, p. 475.Google Scholar
  54. S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schmidt-Langhorst, C. Schubert, and H.G. Weber, Novel fiber Kerr-switch with parametric gain: Demonstration of optical demultiplexing and sampling up to 640 Gb/s, Proc. 30th European Conference on Optical Communication (ECOC2004) at Stockholm, Sweden, September 2004, Post-deadline paper Th4.1.6, pp.12-13.Google Scholar
  55. J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.-O. Hedekvist, Fiber-based optical parametric amplifiers and their applications, IEEE J. Select. Top. Quantum Electron., 8, 506-520 (2002).CrossRefGoogle Scholar
  56. F. Futami, R. Okabe, Y. Takita, and S. Watanabe, Transparent wavelength conversion at up to 160 Gb/s by using supercontinuum generation in a nonlinear fiber, Proc. Optical Amplifiers and Applications (OAA 2003) at Otaru, Japan, 2003, Paper MD07.Google Scholar
  57. S. Ferber, R. Ludwig, F. Futami, S. Watanabe, C. Boerner, C. Schmidt-Langhorst, L. Molle, K. Habel, M. Rohde, H.-G. Weber, 160 Gb/s regenerating conversion node, Proc. Optical Fiber Communication Conference (OFC2004) at Los Angeles, 2004, CA, 2004, Paper ThT2.Google Scholar
  58. T. Akiyama, M. Ekawa, M. Sugawara, H. Sudo, K. Kawaguchi, A. Kuramatsu, H. Ebe, H. Imai, and Y. Arakawa, An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layers, Proc. Optical Fiber Communication Conference (OFC2004) at Los Angeles, 2004, CA, Post-deadline paper, PD12.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Fujitsu Laboratories Ltd., Photonics Networking Laboratories (L-50), 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588Japan

Personalised recommendations