Fiber Bragg gratings for dispersion compensation in optical communication systems

  • M. Sumetsky
  • B.J. Eggleton
Article

Abstract

This paper presents an overview of fiber Bragg gratings (FBGs) fabrication principles and applications with emphasis on the chirped FBG used for dispersion compensation in high-speed optical communication systems. We discuss the range of FBG parameters enabled by current fabrication methods, as well as the relation between the accuracy of FBG parameters and the performance of FBG-based dispersion compensators. We describe the theory of the group delay ripple (GDR) generated by apodized chirped fiber gratings using the analogy between noisy gratings and superstructure Bragg gratings. This analysis predicts the fundamental cutoff of the high frequency spatial noise of grating parameters in excellent agreement with the experimental data. We review the iterative GDR correction technique, which further improves the FBG quality and potentially enables consistent fabrication of FBG-based dispersion compensators and tunable dispersion compensators with unprecedented performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Gruner-Nielsen and B. Edvold, "Status and future promises for dispersion compensating fibers," ECOC, paper 6.1.1 (2002).Google Scholar
  2. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett., 12, 847-849 (1987).Google Scholar
  3. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).Google Scholar
  4. B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems", J. Lightwave Technol., 18, 1418-1432 (2000).CrossRefGoogle Scholar
  5. S.A. Hamilton, B.S. Robinson, T.E. Murphy, S.J. Savage, and E.P. Ippen, "100 Gb/s Optical Time-Division Multiplexed Networks", J. Lightwave Technol., 20, 2086-2100 (2000).CrossRefGoogle Scholar
  6. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett., 62, 1035-1037 (1993).CrossRefGoogle Scholar
  7. T. Kreis, Holographic interferometry: principles and methods (John Wiley & Sons, Inc., 1996).Google Scholar
  8. L.F. Mollenauer and W.J. Tomlinson, "Piecewise interferometric generation of precision gratings," Appl. Optics, 3, 555-557 (1977).Google Scholar
  9. B. Eggleton, P.A. Krug, L. Poladian, and F. Ouellette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett., 30, 1620-1622 (1994).CrossRefGoogle Scholar
  10. M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Quellette, "Broadly tunable DBR fibre laser using sampled fibre Bragg gratings," Electron. Lett., 31, 37-38 (1995).CrossRefGoogle Scholar
  11. W.H. Loh, F.Q. Zhou, and J.J. Pan , "Sampled fiber grating based-dispersion slope compensator," IEEE Photon.Technol. Lett., 11, 1280-1282 (1999).CrossRefGoogle Scholar
  12. H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett., 4, 393-395 (1993).CrossRefGoogle Scholar
  13. A.V. Buryak and D.Y. Stepanov, "Novel multi-channel grating devices," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Washington, DC: OSA, 2001), vol. 61, paper BThB3.Google Scholar
  14. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann Fiber Bragg Gratings and Phase-Only Sampling for High Channel Counts," IEEE Photon. Technol. Lett., 14, 1309-1311 (2002).CrossRefGoogle Scholar
  15. M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, "Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask," Electron. Lett., 31, 1483-1485 (1995).CrossRefGoogle Scholar
  16. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, "Novel technique for writing long superstructured fiber Bragg gratings," in Photosensitivity and quadratic nonlinearity in glass waveguides: Fundamentals and applications, 22 (OSA, Washington D.C., 1995).Google Scholar
  17. R. Kashyap, H.-G. Froehlich, A. Swanton, and D.J. Armes, "1.3 m long superstep-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1809 (1996).CrossRefGoogle Scholar
  18. M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, "Dispersion compensating fibre Bragg gratings", in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, 4532, pp. 540-551, 2001.Google Scholar
  19. K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett., 10, 1476-1478 (1998).CrossRefGoogle Scholar
  20. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, "Influence of filter group delay ripples on system performance," in Proc. ECOC 1999, pp. 1410-1411.Google Scholar
  21. M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, "Dispersion compensating fibre Bragg gratings", in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, Vol. 4532, pp. 540-551, 2001.Google Scholar
  22. F. Ouellette, "The effect of profile noise on the spectral response of fiber gratings" in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.Google Scholar
  23. R. Feced and M.N. Zervas, "Effect of random phase and amplitude errors in optical fiber gratings", J. Lightwave Technol., 18, 90-101 (2000).CrossRefGoogle Scholar
  24. R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, "Impact of random phase errors on the performance of fiber grating dispersion compensators", Opcal Fiber Communication Conference (OFC), 2001, Anheim, CA, Paper WDD89, 2001.Google Scholar
  25. M. Sumetsky, B.J. Eggleton, and C.M. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings", Opt. Express, 10, 332-340 (2002).Google Scholar
  26. L. Poladian, "Graphical and WKB analysis of nonuniform Bragg gratings", Phys. Rev. E, 48, 4758-4767 (1993).CrossRefGoogle Scholar
  27. N.G.R. Broderick and C.M. de Sterke, "Theory of grating superstructures", Phys. Rev. E, 55, 3634-3646 (1997).CrossRefGoogle Scholar
  28. I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, "Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission," IEEE J. Select. Topics Quant. Electron., 5, 1312-1324 (1999).CrossRefGoogle Scholar
  29. S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, "Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask," Appl. Opt., 39, 3670-3677 (2000).Google Scholar
  30. T. Komukai, T. Inui, and M. Nakazawa, "Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique," Electron. Lett., 37, 449-451 (2001).CrossRefGoogle Scholar
  31. A.V. Buryak and D.Yu. Stepanov, "Correction of systematic errors in the fabrication of fiber Bragg gratings," Opt. Lett., 27, 1099-1101 (2002).Google Scholar
  32. M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, "Group delay ripple correction in chirped fiber Bragg gratings," Opt. Lett., 28, 777-779 (2003).PubMedGoogle Scholar
  33. J. Skaar and R. Feced, "Reconstruction of gratings from noisy reflection data," J. Opt. Soc. Am. A, 19, 2229-2237 (2002).Google Scholar
  34. M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Deshmukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S.Dey, "High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique," Electron. Lett., 39, 1196-1198 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. Sumetsky
    • 1
  • B.J. Eggleton
    • 2
  1. 1.OFS Laboratories, 19 Schoolhouse Rd., Somerset, NJ 08873USA
  2. 2.CUDOS—Center for Ultra-high bandwidth Devices for Optical Systems, School of Physics, University of Sydney, NSW 2006Australia

Personalised recommendations