Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission

  • Leaf A. Jiang
  • Erich P. Ippen
  • Hiroyuki Yokoyama
Article

Abstract

Semiconductor mode-locked lasers are evaluated as pulse sources for high bit rate data transmission. This chapter describes the requirements of OTDM sources for high bit rate data transmission, compares various OTDM source technologies, describes three semiconductor mode-locked laser cavity designs, explains the impact of timing jitter and amplitude noise on OTDM performance, illustrates how to characterize noise of OTDM sources using rf and optical techniques, shows how to interpret the noise measurements, and finally discusses semiconductor mode-locked laser cavity optimizations that can achieve low noise performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludwig, R., Diez, S., Ehrhardt, A., Kuller, L., Pieper, W., Weber, H.G. 1998A tunable femtosecond modelocked semiconductor laser for applications in OTDM-systemsIEICE Trans. Electron.E81-C140145Google Scholar
  2. Yokoyama, H. 1999Highly stabilized mode-locked semiconductor diode lasersRev. Laser Eng.27750755Google Scholar
  3. Yokoyama, H. 2002Highly reliable mode-locked semiconductor lasersIEICE Trans. Electron.E85-C2736Google Scholar
  4. Jiang, L.A., Grein, M.E., Ippen, E.P., McNeilage, C., Searls, J., Yokoyama, H. 2002Quantum-limited noise performance of a modelocked laser diodeOpt. Lett.274951Google Scholar
  5. DePriest, C.M., Yilmaz, T., Braun, A., Abeles, J.H., Delfyett, P.J. 2002High-quality photonic sampling streams from a semiconductor diode ring laserIEEE J. Quant. Electron.38380389CrossRefGoogle Scholar
  6. Feiste, U., Ludwig, R.,  et al. 2001160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDMElectron. Lett.37443445CrossRefGoogle Scholar
  7. Nakazawa, M., Yamamoto, T., Tamura, K.R. 2002Ultrahigh-speed OTDM transmission beyond 1 Ter-bit-per-second using a femtosecond pulse trainIEICE Trans. Electron.E85-C117125Google Scholar
  8. Zhang, J., Yao, M.,  et al. 2000Bit error rate analysis of OTDM system based on moment generation functionJ. Lightwave Technol.1815131518CrossRefGoogle Scholar
  9. K.S. Jepsen, H.N. Poulsen, A.T. Clausen, and K.E. Stubkjer, Investigation of cascadability of add-drop multiplexers in OTDM systems, Proc. ECOC’98, 1998, vol. 1Google Scholar
  10. Nielsen, M.L., Olsson, B.-E., Blumenthal, D.J. 2002Pulse extinction ratio improvement using SPM in an SOA for OTDM system applicationsIEEE Photon. Technol. Lett.14245247CrossRefGoogle Scholar
  11. Hashimoto, E., Takada, A., Katagiri, Y. 1999High-frequency synchronized signal generation using semiconductor lasersIEEE Transactions on Microwave Theory and Techniques4712061218CrossRefGoogle Scholar
  12. Ogura, I., Kurita, H.,  et al. 2001Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processingOpt. Quant. Electron.33709725CrossRefGoogle Scholar
  13. PriTel, Naperville, IL, USA, Datasheet for UOC series Ultrafast Optical ClocksGoogle Scholar
  14. Calmar Optcom, Sunnyvale, CA, USA, Datasheet for PSL series picosecond lasers, 2001Google Scholar
  15. GigaTera, Lerzenstrasse 16, CH-8953 Dietikron, Switzerland, Datasheet for ERGO pulse generating laser, September 2002Google Scholar
  16. Emmanuel Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley and Sons, New York, 1994)Google Scholar
  17. Ellis, A.D., Manning, R.J.,  et al. 19991.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fibre for application to 160 Gbit/s OTDM networksElectron. Lett.8645646CrossRefGoogle Scholar
  18. Li, J., Andrekson, A., Bakhshi, B. 2000Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laserIEEE Photon. Technol. Lett.1211501152CrossRefGoogle Scholar
  19. Bakhshi, B., Andrekson, P.A. 200040 GHz actively modelocked polarisation-maintaining erbium fibre ring laserElectron. Lett.36411413CrossRefGoogle Scholar
  20. Carruthers, T.F., Duling, I.N. 199610-GHz, 1.3 ps erbium fiber laser employing soliton pulse shorteningOpt. Lett.2119271929Google Scholar
  21. Nakazawa, M., Yoshida, E. 2000A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laserIEEE Photon. Technol. Lett.1216131615CrossRefGoogle Scholar
  22. Mamyshev, P.V., Chernikov, S.V., Dianov, E.M. 1991Generation of fundamental soliton trains for high-bit-rate optical fiber communication linesIEEE J. Quant. Electron.2723472355Google Scholar
  23. Murphy, T. E. 200210-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain mediumIEEE Photon Technol. Lett.1414241426CrossRefGoogle Scholar
  24. D. Lee, H. Yoon, and N. Park, Extension of dispersion decreasing fiber -- pulse shaping method for the optical time division multiplexing system source applications, CLEO Pacific Rim’99, 1999Google Scholar
  25. Guy, M. J., Chernikov, S. V.,  et al. 1995200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulatorElectron. Lett.31740741Google Scholar
  26. Guy, M. J., Chernikov, S. V.,  et al. 19951.2 ps pulses at low base repetition rates for 100 Gbit/s per channel optical communication networksElectron. Lett.3121902191Google Scholar
  27. Chernikov, S. V., Taylor, J. R., Kashyap, R. 1994Comb-like dispersion-profiled fibre for soliton pulse-train generationOpt. Lett.19539541Google Scholar
  28. Guy, M., Chernikov, S., Taylor, R. 1998Electroabsorption modulators for high speed ultrashort pulse generation and processingIEICE Trans. Electron.E81-C169174Google Scholar
  29. Matsui, Y., Pelusi, M. D., Suzuki, A. 1999Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression techniqueIEEE Photon. Technol. Lett.1112171219CrossRefGoogle Scholar
  30. Ohta, H., Nogiwa, S., Chiba, H. 1998Generation of low timing jitter, sub-picosecond optical pulses using a gain-switched DFB-LD with CW light injection and a nonlinear optical loop mirrorIEICE Trans. Electron.E81-C166168Google Scholar
  31. Wiliams, K. A., White, I. H.,  et al. 1996Jitter reduction through feedback for picosecond pulsed InGaAsP lasersIEEE J. Quant. Electron.3219881994CrossRefGoogle Scholar
  32. Jinno, M. 1993Correlated and uncorrelated timing jitter in gain-switched laser diodesIEEE Photon. Technol. Lett.511401143CrossRefGoogle Scholar
  33. Arakawa, Y., Sogawa, T.,  et al. 1987Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching methodAppl. Phys. Lett.5112951297CrossRefGoogle Scholar
  34. Ho, P. T., Glasser, L. A.,  et al. 1978Picosecond pulse generation with a cw GaAlAs laser diodeAppl. Phys. Lett.33241242CrossRefGoogle Scholar
  35. Ludwig, R., Ehrhardt, A. 1995Turn-key-ready wavelength-, repetition rate- and pulsewidth-tunable femtosecond hybrid modelocked semiconductor laserElectron. Lett.3111651167Google Scholar
  36. Y. Hashimoto, H. Yamada, R. Kuribayashi, and H. Yokoyama, 40-GHz tunable optical pulse generation from a highly-stable external-cavity mode-locked semiconductor laser module, OFC’02, OSA, 2002Google Scholar
  37. Sato, K., Hirano, A.,  et al. 1999High-frequency and low-jitter optical pulse generation using semiconductor mode-locked lasersIEEE Transactions on Microwave Theory and Techniques4712511256CrossRefGoogle Scholar
  38. Sato, K., Kotaka, I.,  et al. 1996Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectorsIEEE J. Select. Topics Quant. Electron.2557565Google Scholar
  39. Sato, K., Wakita, K.,  et al. 1994Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode lockingAppl. Phys. Lett.6513CrossRefGoogle Scholar
  40. Tucker, R. S., Koren, U.,  et al. 198940 Ghz active mode-locking in a 1.5 μm monolithic extended-cavity laserElectron. Lett.25621622Google Scholar
  41. Wu, M. C., Chen, Y. K.,  et al. 1990Transform-limited 1.4 ps optical pulses from a monolithic colliding-pulse mode-locked quantum well laserAppl. Phys. Lett.57759761CrossRefGoogle Scholar
  42. Chen, Y. K., Wu, M. C. 1992Monolithic colliding-pulse mode-locked quantum-well lasersIEEE J. Quant. Electron.2821762185CrossRefGoogle Scholar
  43. Hansen, P. B., Raybon, G.,  et al. 1995Monolithic semiconductor soliton transmitterJ. Lightwave Technol.13297301CrossRefGoogle Scholar
  44. Hansen, P. B., Raybon, G.,  et al. 19925.5-mm long InGaAsP monolithic extended-cavity laser with an integrated bragg-reflector for active mode-lockingIEEE Photon. Technol. Lett.4215217CrossRefGoogle Scholar
  45. Morton, P. A., Bowers, J. E.,  et al. 1990Monolithic hybrid mode-locked 1.3 μm semiconductor lasers Appl. Phys. Lett.56111113CrossRefGoogle Scholar
  46. Derickson, D. J., Helkey, R. J.,  et al. 1992Short pulse generation using multisegment mode-locked semiconductor lasersIEEE J. Quant. Electron.2821862202CrossRefGoogle Scholar
  47. Guy, M. J., Chernikov, S. V., Taylor, J. R. 1997A duration-tunable, multiwavelength pulse source for OTDM and WDM communicationsIEEE Photon. Technol. Lett.910171019CrossRefGoogle Scholar
  48. Pelusi, M. D., Matsui, Y., Suzuki, A. 1999Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fibreElectron. Lett.35734735CrossRefGoogle Scholar
  49. Reeves-Hall, P. C., Taylor, J. R. 2001Wavelength and duration tunable subpicosecond source using adiabatic Raman compressionElectron. Lett.37417418CrossRefGoogle Scholar
  50. Yoshida, E., Nakazawa, M. 1999A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560IEEE Photon. Technol. Lett.1115871589CrossRefGoogle Scholar
  51. Yoshida, E., Nakazawa, M. 1999Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laserIEEE Photon. Technol. Lett.11548550CrossRefGoogle Scholar
  52. Yoshida, E., Nakazawa, M. 1998Wavelength tunable 1.0 ps pulse generation in 1.530-1.555 μm region from PLL regeneratively modelocked fibre laserElectron. Lett.3417531754CrossRefGoogle Scholar
  53. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)Google Scholar
  54. Yokoyama, H., Shimizu, T.,  et al. 1995Synchronous injection locking operation of monolithic mode-locked diode lasersOpt. Rev.28588Google Scholar
  55. Ogura, I., Sasaki, T.,  et al. 1999Precise sdh frequency operation of monolithic laser diodes with frequency tuning functionElectron. Lett.3512751277CrossRefGoogle Scholar
  56. Sato, K., Hiroyuki, I.,  et al. 1997Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratingsIEEE J. Select. Topics Quant. Electron.3250255CrossRefGoogle Scholar
  57. Bowers, J. E., Morton, P. A.,  et al. 1989Actively mode-locked semiconductor lasersIEEE J. Quant. Electron.2514261439CrossRefGoogle Scholar
  58. DePriest, C. M., Yilmaz, T.,  et al. 2002Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ringOpt. Lett.27719721Google Scholar
  59. Harvey, G. T., Mollenauer, L. F. 1993Harmonically mode-locked fiber laser with an internal Fabry-Perot stabilizer for soliton transmissionOpt. Lett.18107109Google Scholar
  60. Gupta, K. K., Onodera, N., Hyodo, M. 2001Technique to generate equal amplitude, higher-order optical pulses in rational harmonically modelocked fibre ring lasersElectron. Lett.37948950CrossRefGoogle Scholar
  61. Clark, T. R., Carruthers, T. F.,  et al. 1999Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laserElectron. Lett.35720721CrossRefGoogle Scholar
  62. Yilmaz, T., DePriest, C. M., Delfyett, P. J. 2001Complete noise characterisation of external cavity semiconductor laser hybridly modelocked at 10 GHzElectron. Lett.3713381339CrossRefGoogle Scholar
  63. Yamamoto, T., Oxenlowe, L. K.,  et al. 2001Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch baseed on semiconductor optical amplifierElectron. Lett.37509510CrossRefGoogle Scholar
  64. Tong, D. T. L., Deng, K.-L.,  et al. 2000160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loopElectron. Lett.3619511952CrossRefGoogle Scholar
  65. Derickson, D. J., Mar, A., Bowers, J. E. 1990Residual and absolute timing jitter in actively mode-locked semiconductor lasersElectron. Lett.2620262028Google Scholar
  66. Ng, W., Stephens, R.,  et al. 2001Ultra-low jitter modelocking of er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversionElectron Lett.37113115CrossRefGoogle Scholar
  67. F. Rana, H. L. T. Lee, M. E. Grein, L. A. Jiang, and R. J. Ram, Characterization of the noise and correlations in harmonically mode-locked lasers, to be published in JOSA BGoogle Scholar
  68. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley and Sons, New York, 1995)Google Scholar
  69. Leep, D. A., Holm, D. A. 1992Spectral measurement of timing jitter in gain-switched semiconductor lasersAppl. Phys. Lett.6024512453CrossRefGoogle Scholar
  70. Gross, M. C., Hanna, M.,  et al. 2002Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitterAppl. Phys. Lett.8036943696CrossRefGoogle Scholar
  71. Linde, D. 1986Characterization of noise in continuously operating mode-locked lasersAppl. Phys. B39201217CrossRefGoogle Scholar
  72. Keller, U., Li, K. D.,  et al. 1989Noise characterization of femtosecond fiber raman soliton lasersIEEE Journal of Quantum Electronics25280288CrossRefGoogle Scholar
  73. Blake Peterson, Spectrum analysis, application note 150, Tech. Rep., Agilent Technologies, 1989.Google Scholar
  74. L. A. Jiang, M. E. Grein, S. T. Wong, H. A. Haus, and E. P. Ippen, Measuring timing jitter with optical cross-correlations, submitted to IEEE J. Quant. Electron.Google Scholar
  75. Crooker, S. A., Betz, F. D.,  et al. 1996Femtosecond synchronization of two passively mode-locked Ti:sapphire lasersRev. Sci. Instrum.6720682071CrossRefGoogle Scholar
  76. L. A. Jiang, Ultralow-noise modelocked lasers, Ph.D. thesis, MIT, 2002Google Scholar
  77. Grein, M. E., Jiang, L. A.,  et al. 1999Timing restoration dynamics in an actively mode-locked fiber ring laserOpt. Lett.2416871689Google Scholar
  78. Jiang, L. A., Abedin, K. S.,  et al. 2002Retiming dynamics of a mode-locked semiconductor laserElectron. Lett.3814461447CrossRefGoogle Scholar
  79. L. A. Jiang, M. E. Grein, and E. P. Ippen, Region of validity for residual phase noise measurements of actively modelocked lasers, submitted to Electron. Lett. Google Scholar
  80. Shi, H., Cohen, D.,  et al. 2002Relative intensity noise measurements of a widely tunable sampled-grating DBR laserIEEE Photon. Technol. Lett.14759761CrossRefGoogle Scholar
  81. Scott, R. P., Langrock, C., Kolner, B. H. 2001High-dynamic-range laser amplitude and phase noise measurement techniquesIEEE. J. Select. Topics Quant. Electron.7641655CrossRefGoogle Scholar
  82. Grein, M. E., Haus, H. A.,  et al. 2001Action on pulse position and momentum using dispersion and phase modulationOpt. Express8664669Google Scholar
  83. Jiang, L. A., Grein, M. E.,  et al. 2003Timing jitter eater for optical pulse trainsOpt. Lett.287880PubMedGoogle Scholar
  84. L. Mollenauer and C. Xu, Time-lens timing-jitter compensator in ultra-long haul dwdm dispersion managed soliton transmissions, CLEO’02 Postdeadline Papers, 2002Google Scholar
  85. Thomas R. Clark, Irl N. Duling III, Robert P. Moeller, Active filtering of the amplitude noise of a mode-locked fiber laser, Conference on Lasers and Electro-Optics, San Francisco, California, USA, May 2000, OSAGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Leaf A. Jiang
    • 1
  • Erich P. Ippen
    • 1
  • Hiroyuki Yokoyama
    • 2
  1. 1.Research Laboratories of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.New Industry Creation Hatchery Center (NICHe)Tohoku UniversityMiyagiJapan

Personalised recommendations