PMD compensation techniques

Article

Abstract

Mitigating PMD is still a challenge in today’s optical communications. After giving the key performance indicators dictated by the statistical nature of PMD, we introduce the classification of PMD compensation schemes into 2 categories: optical and electrical PMD compensators. In a first part, we explain the operation principle of a PMD compensator by taking a detailed look at the basic optical PMD compensator and appropriate feedback signals. More complex multistage structures and a feed-forward adaptation approach are also discussed. This first part is closed by results from a one-year field trial confirming the behavior and performance of a prototype compensator. In the second part of this article, electronic equalization for PMD mitigation is explained. Starting with a discussion on performance and adaptation of linear equalizers suitable for analog electronic signal processing, finally also the Viterbi equalizer basing on digital signal processing is analyzed. A comparative review of mitigation by optical or electronic means concludes the discussion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poole, C. D. R.E. Wagner1986Phenomenological approach to polarisation dispersion in long single-mode fibresElectron. Lett.2210291030Google Scholar
  2. 2.
    L.M. Gleeson, ESR Sikora, and MJ. O’Mahoney, “Experimental and numerical investigation into the penalties induced by second order polarisation mode dispersion at 10 Gb/s,” Proc. ECOC 97, vol.1, 1997, pp. 15–18.Google Scholar
  3. 3.
    H. Bülow, “Limitation of optical first-order PMD compensation,” Proc. OFC/IOOC’99, 1999, WE1.Google Scholar
  4. 4.
    H. Bülow, and S. Lanne, “Optical and Electronic PMD Compensation,” Tutorial Notes, OFC 2003, Atlanta, ThP.Google Scholar
  5. 5.
    H. Bülow, “Polarization Mode Dispersion Mitigation” in Encyclopedia of Telecommunications, J. Proakis (Ed.) (Wiley, 2002).Google Scholar
  6. 6.
    H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers, and W. Weiershausen, “Measurement of the maximum speed of PMD fluctuation in installed field fiber,” Proc. OFC’99, 1999, WE4.Google Scholar
  7. 7.
    Waddy, D.S. P. Lu, L. Chen, and X. Bao2001Fast state of polarization changes in aerial fiber under different climatic conditionsPhoton. Technol. Lett.1310351037CrossRefGoogle Scholar
  8. 8.
    Ono, T. S. Yamazaki, H. Shimizu, and K. Emura1994Polarization control method for suppressing polarization mode dispersion influence in optical transmission systemsJ. Lightwave Technol.12891898CrossRefGoogle Scholar
  9. 9.
    Penninckx, D. F. Roy, S. Lanne, and J-P. Thiéry2000Statistical study of dynamic polarization-mode dispersion compensation based on degree of polarization monitoringMicrowave Opt. Technol. Lett.264143CrossRefGoogle Scholar
  10. 10.
    Noé, R. D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Shöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase1999Polarization mode dispersion at 10, 20 and 40 Gb/s with various oprical equalizersJ. Lightwave Technol.1716021616CrossRefGoogle Scholar
  11. 11.
    Z. Pan, Y. Xie, S. Lee, A.E. Willner, V. Grubsky, D.S. Starodubov, and J. Feinberg, “Chirp-free tunable PMD compensation using Hi-Bi nonlinearly-chirped FBGs in a dual-pass configuration,” Proc. OFC2000, ThH2, 2000, pp. 113–115.Google Scholar
  12. 12.
    D. Penninckx and S. Lanne, “Ultimate limits of optical polarization-mode dispersion compensators,” Proc. ECOC 2000, P3.8, 2000, pp. 205–206.Google Scholar
  13. 13.
    M. Karlsson, C. Xie, H. Sunnerud, and P.A. Andrekson, “Higher order polarization mode dispersion compensator with three degrees of freedom,” Proc. OFC’01, 2001, MO1.Google Scholar
  14. 14.
    F. Roy, C. Francia, F. Bruyére, and D. Penninckx, “A simple dynamic polarization mode dispersion compensator,” Proc. OFC’99, 1999,TuS4, p. 275.Google Scholar
  15. 15.
    G. Ishikawa and H. Ooi, “Polarization-mode dispersion sensitivity and monitoring in 40 Gb/s OTDM and 10 Gb/s NRZ transmission experiments,” Proc. OFC98, WC5, pp. 117–119, 1998.Google Scholar
  16. 16.
    F.Heismann, D.A. Fishman, and D.L. Wilson, “Automatic compensation of firstorder polarization mode disperion in a 10Gb/s transmission system,” Proc. ECOC’98, WdC11, 1998.Google Scholar
  17. 17.
    S. Bahsoun, J. Nagel, and C. Poole, “Measurments of temporal variations in fiber transfer characteristics to 20 GHz due to polarization-mode dispersion,” Proc. ECOC’90, Sept. 16–20, Amsterdam, 1990, ThG1.5, pp. 1003–1006.Google Scholar
  18. 18.
    M. Fregolent, S. Herbst, H. Soehnle, and B. Wedding, “Adaptive optical receiver for performance monitoring and electronic mitigation of transmission impairments,” Proc. ECOC 2000, Sept. 3–7, Munich, Germany, 2000, 2.1.2.Google Scholar
  19. 19.
    H. Bülow, F. Buchali, and G. Thielecke, “Adaptation of an Electronic PMD Mitigator by Maximization of the Eye Opening,” Proc. ECOC 2000, P3.10, 2000.Google Scholar
  20. 20.
    F. Buchali, W. Baumert, H. Bülow, J. Poirrier, and S. Lanne, “A 40 Gb/s eye monitor and its application to adaptive PMD compensation,” Proc. OFC 2002, 2002, WE6, p. 202.Google Scholar
  21. 21.
    C.Glingener, A. Schopflin, A. Farbert, G. Fischer, R. Noé, D. Sandel, S. Hinz, M. Yoshida-Derolf, V. Mirvoda, G. Feise, H. Hermann, R. Ricken, W. Sohler, and F. Wehrmann, “Polarization mode dispersion compensation at 20 Gb/s with a compact distributed equalizer in LiNbO3,” post deadline paper, OFC/IOOC’99, 1999, PD29.Google Scholar
  22. 22.
    J. Poirrier, H. Bülow, and F. Buchali, “Optical PMD compensation performance: numerical assessment,” Proc. OFC2002, WI3, p. 234.Google Scholar
  23. 23.
    H. Rosenfeldt, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. Berger, R. Ludwig, H.G. Weber, and A. EhrHardt, “Feed-forward approach for automatic PMD compensation at 80 Gbit/s over 45 km installed single mode fiber,” ECOC 2001, postdeadline paper PD.B.1.1.Google Scholar
  24. 24.
    D. Sobiski, D. Pikula, J. Smith, C. Henning, D. Chowdhury, E. Murphy, E. Kolltveit, and F. Annunziata, “Fast first-order PMD compensation with low insertion loss for 10 Gbit/s system,” Electron. Lett., 37 (1), (2001).Google Scholar
  25. 25.
    L.-S. Yan, C. Yeh, G. Yang, L. Lin, Z. Chen, Y.Q. Shi, and X.S. Yao, “Fast digitally variable differential group delay module using polarization switching,” Postdeadline OFC 2002, FA5.Google Scholar
  26. 26.
    Yu, Q. A.E. Willner2002Performance limits of first-order PMD compensators using fixed and variable DGD elementsPhoton. Technol. Lett.14304306CrossRefGoogle Scholar
  27. 27.
    Madsen, C.K. 2000Optical all-pass filters for polarization mode dispersion compensationOpt. Lett.25878880Google Scholar
  28. 28.
    L.Möller, “Broadband PMD Compensation in WDM Systems,” Proc. ECOC 2000, Sept 3–7, Munich, Germany, 2000, P1.15.Google Scholar
  29. 29.
    K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol., 14 (9), (September 1996).Google Scholar
  30. 30.
    A. Eyal and A. Yariv, “Design of broad-band PMD compensation filters,” IEEE Photon. Technol. Lett., 1088–1090 (Aug. 2002).Google Scholar
  31. 31.
    T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, and K. Okamoto, “Planar Lightwave Circuit Polarization Mode Dispersion Compensator,” Proc. ECOC 2001, Amsterdam, NL, Sept. 30–Oct. 4, 2001, Mo.F.2.Google Scholar
  32. 32.
    M. Bohn, F. Horst, B. J. Offrein, G. L. Bona, W. Rosenkranz, and P. Krummrich; “Simultaneous Adaptive Equalization of Group Velocity and Polarization Mode Dispersion at 40 Gb/s with Integrated Optical FIR-Filters and Electrical Spectrum Monitoring as Feedback,” Proc. ECOC 2002, Rimini, Th2.2.4.Google Scholar
  33. 33.
    C.K. Madsen, E.J. Laskowski, M. Cappuzzo, L. Buhl, S. Chandrasekhar, E. Chen, L. Gomez, A. Griffin, L. Stulz, and A. Wong-Foy, “A Versatile, Integrated Emulator for First- and Higher-Order PMD,” Proc. ECOC 2003, Rimin, Th2.2.6.Google Scholar
  34. 34.
    H. Bülow, “Self-Stabilizing Continuously Tunable Group Delay Line for PMD Compensation,” Proc. ECOC2002, Copenhagen, 9.3.5.Google Scholar
  35. 35.
    C.K. Madsen, P. Oswald, S. Chandrasekhar, L. Buhl, M. Cappuzzo, E.J. Laskowski, E. Chen, L. Gomez, A. Griffin, A. Kasper, L. Stulz, and A. Wong-Foy, “Real-time PMD Measurement Using An Integrated Wavelength-Scanning Polarimeter,” Proc. ECOC 2003, Rimini, Th2.2.6.Google Scholar
  36. 36.
    M.W. Chbat, J-P. Soigné, T. Fuerst, J.T. Anthony, S. Lanne, H. Février, B.M. Desthieux, A.H. Bush, and D. Penninckx, “Long term field demonstration of optical PMD compensation on an installed OC-192 link,” Proc. OFC’99, PD12, 1999.Google Scholar
  37. 37.
    D. A. Watley, K.S. Farley, W.S. Lee, G. Bordogna, B.J. Shaw, and A.P. Hadjifotiou, “Field evaluation of an optical PMD compensator using an installed 10 Gbit/s system,” OFC2000, ThB6, pp. 37–39, 2000.Google Scholar
  38. 38.
    S. Lanne, J-P. Thiéry, D. Penninckx, J-P. Hamaide, J-P. Soigné, B. Desthieux, J. Le Briand, L. Macé, P. Gavignet, “Field optical PMD compensation at 10 Gb/s over installed fibre totalling 35ps of PMD,” Proc. ECOC 2000, P3.9, 2000.Google Scholar
  39. 39.
    T. Ono, Y. Yano, L.D. Garret, J.A. Nagel, M.MJ. Dickerson, and M. Cvijetic, “10 Gb/s PMD compensation field experiment over 452 km using Principal State Transmission method,” Proc. OFC 2000, PD44.Google Scholar
  40. 40.
    Winters, J.H. R.D.Gitlin1990Electrical Signal Procressing Techniques in Long-Haul Fiber-Optic SystemsTrans. Commun.3814391453CrossRefGoogle Scholar
  41. 41.
    Kasturia, S. J.H.Winters1991Techniques for High-Speed Implementation of Nonlinear CancellationJ. Select. Areas Commun.9711717CrossRefGoogle Scholar
  42. 42.
    H.F. Haunstein, K.Sticht, A.Dittrich, W.Sauer-Greff, and R.Urbansky, “Design of near optimum electrical equalizer for optical transmission in the presence of PMD,” Tech. Dig. OFC 2001, Mar 10–21, Anaheim, USA, 2001, WAA4.Google Scholar
  43. 43.
    J. Poirrier, A. Gnauck, and J. Winters, “Experimental Nonlinear Cancellation of Polarization-Mode Dispersion,” Techn. Dig. OFC’00, Baltimore, Mar. 7–10, ThH4, 2000, pp. 119–121.Google Scholar
  44. 44.
    Möller, L. A. Thiede, S. Chandrasekhar, W. Benz, M. Lang, T. Jakobus, and M. Schlecthweg1999ISI mitigation using decision feedback loop demonstrated with PMD distorted 10 Gbit/s signalsElectron. Lett.3520922093CrossRefGoogle Scholar
  45. 45.
    H. Bülow, R. Ballentin, W. Baumert, G. Maisonneuve, G. Thielecke, and T. Wehren, “Adaptive PMD mitigation at 10 Gbit/s using an electronic SiGe equaliser IC,” Proc. ECOC’99, Sept. 26–30, Nice, France, 1999, We C3.4, pp. 138–139.Google Scholar
  46. 46.
    Bülow, H. F. Buchali, W. Baumert, R. Ballentin, and T. Wehren2000PMD mitigation at 10 Gbit/s using linear and nonlinear integrated electronic equaliser circuitsElectron. Lett. 36163164CrossRefGoogle Scholar
  47. 47.
    H. Bülow and G. Thielecke, “Electronic PMD mitigation—from linear equalization to maximum-likelihood detection,” Techn. Dig. OFC’2001, Mar. 10–21, Anaheim, USA, 2001, WAA3.Google Scholar
  48. 48.
    U.-V. Koc, K.-Y. Tu, and N. Kaneda, “Adaptive Electronic Equalization Using Higher-Order Statistics for PMD Compensation in Long-Haul Fiber-Optic Systems,” Proc. ECOC 2002, Copenhagen, Sept. 2002, 7.1.5.Google Scholar
  49. 49.
    H. Haunstein, R. Schlenk, K. Sticht, A. Dittrich, W. Sauer-Greff, and R. Urbansky, “Control of Combined Electrical Feed-Forward and Decision Feedback Equalization by Conditional Error Counts from FEC in the Presence of PMD,” Tech. Dig. OFC 2003, Atlanta, ThG5.Google Scholar
  50. 50.
    R.D. Gitlin, J.F. Hayes, and S.B. Weinstein, Data Communications Principles (Plenum Press, New York).Google Scholar
  51. 514.
    J. G. Proakis, Digital Communications, 3rd ed., international ed. (McGraw-Hill, 1995).Google Scholar
  52. 52.
    Hakki, B.W. 1997Polarization Mode Dispersion Compensation by Phase Diversity DetectionPhoton. Technol. Lett.9121123CrossRefGoogle Scholar
  53. 53.
    A. O. Lima, I. T. Lima, Jr., T. Adali, and C. R. Menyuk, “A novel polarization diversity receiver for PMD mitigation,” IEEE Photon. Technol. Lett., (2002).Google Scholar
  54. 54.
    H. Bülow et al., Proc. ECOC 2000, 4.2.4.Google Scholar
  55. 55.
    H. Bülow, F. Buchali, and G. Thielecke, “Electronically Enhanced Optical PMD Compensation”, Proc. ECOC 2000, Sept. 3–7, Munich, Germany, 2000, 4.2.4.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Alcatel Research & Innovation, Holderaeckerstr. 35, D-70499 StuttgartGermany
  2. 2.Alcatel Research & Innovation, Route de Nozay, 91460 MarcoussisFrance

Personalised recommendations