Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 46, Issue 12, pp 1769–1780 | Cite as

Identification and characterization of the ZRT, IRT-like protein (ZIP) family genes reveal their involvement in growth and kojic acid production in Aspergillus oryzae

  • Zhe Zhang
  • Junxia Fan
  • Chuannan Long
  • Bin He
  • Zhihong Hu
  • Chunmiao Jiang
  • Yongkai Li
  • Long Ma
  • Jingshang Wen
  • Xiaojin Zou
  • Yuan Chen
  • Zhenxiang Ge
  • Bin ZengEmail author
Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • 208 Downloads

Abstract

The ZRT, IRT-like protein (ZIP) family exists in many species and plays an important role in many biological processes, but little is known about ZIP genes in Aspergillus oryzae. Here, 10 ZIP genes in A. oryzae were identified and these were classified into four groups based on phylogenetic analysis. The structures of these AoZip genes were determined, which indicated a great divergence of AoZip members from different groups. Synteny analysis revealed that AoZip7, AoZip8, and AoZip10 are conserved among Aspergillus species. We also found that the promoter regions of AoZip2, AoZip7, AoZip8, and AoZip10 contain multiple conserved response elements. Expression analysis revealed that AoZips exhibited different expression patterns in response to different metal treatments. Moreover, overexpression and RNA-interference (RNAi) of AoZip2 led to a decrease in mycelium growth diameter and inhibited conidia formation. AoZip2 overexpression and RNAi strains showed distinct sensitivity to severely Zn/Mn-depleted stress. In addition, kojic acid production was markedly lower in AoZip2 overexpression and RNAi strains than in the control strains, and the expression of kojA, kojR, and kojT was down-regulated in AoZip2 overexpression and RNAi strains. This study provides new insights into our understanding of ZIP genes and lays a foundation for further investigation of their roles in Aspergillus oryzae.

Keywords

Aspergillus oryzae ZIP transporter Kojic acid Secondary metabolism 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (31460447 and 31171731) and Doctoral Scientific Research Foundation of Jiangxi Science and Technology Normal University (3000990632).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10295_2019_2236_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1597 kb)

References

  1. 1.
    Amich J, Calera JA (2014) Zinc acquisition: a key aspect in Aspergillus fumigatus virulence. Mycopathologia 178:379–385.  https://doi.org/10.1007/s11046-014-9764-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Amich J, Vicentefranqueira R, Leal F, Calera JA (2010) Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot Cell 9:424–437.  https://doi.org/10.1128/EC.00348-09 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amich J, Vicentefranqueira R, Mellado E, Ruiz-Carmuega A, Leal F, Calera JA (2014) The ZrfC alkaline zinc transporter is required for Aspergillus fumigatus virulence and its growth in the presence of the Zn/Mn-chelating protein calprotectin. Cell Microbiol 16:548–564.  https://doi.org/10.1111/cmi.12238 CrossRefPubMedGoogle Scholar
  4. 4.
    Arakawa GY, Kudo H, Yanase A, Eguchi Y, Kodama H, Ogawa M, Koyama Y, Shindo H, Hosaka M, Tokuoka M (2019) A unique Zn(II)2-Cys6-type protein, KpeA, is involved in secondary metabolism and conidiation in Aspergillus oryzae. Fungal Genet Biol 127:35–44.  https://doi.org/10.1016/j.fgb.2019.02.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Ban A, Tanaka M, Fujii R, Minami A, Oikawa H, Shintani T, Gomi K (2018) Subcellular localization of aphidicolin biosynthetic enzymes heterologously expressed in Aspergillus oryzae. Biosci Biotechnol Biochem 82:139–147.  https://doi.org/10.1080/09168451.2017.1399789 CrossRefPubMedGoogle Scholar
  6. 6.
    Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, Mazurie A, Grahl N, Haas H, Cramer RA (2011) SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 7:e1002374.  https://doi.org/10.1371/journal.pgen.1002374 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Christensen T, Hynes MJ, Davis MA (1998) Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Biotechnol 64:3232–3237Google Scholar
  8. 8.
    Chung D, Haas H, Cramer RA (2012) Coordination of hypoxia adaptation and iron homeostasis in human pathogenic fungi. Front Microbiol 3:381.  https://doi.org/10.3389/fmicb.2012.00381 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Citiulo F, Jacobsen ID, Miramon P, Schild L, Brunke S, Zipfel P, Brock M, Hube B, Wilson D (2012) Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 8:e1002777.  https://doi.org/10.1371/journal.ppat.1002777 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Do E, Hu GG, Caza M, Kronstad JW, Jung WH (2016) The ZIP family zinc transporters support the virulence of Cryptococcus neoformans. Med Mycol 54:605–615.  https://doi.org/10.1093/mmy/myw013 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722.  https://doi.org/10.1016/j.bbamcr.2006.03.005 CrossRefGoogle Scholar
  12. 12.
    Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284:18565–18569.  https://doi.org/10.1074/jbc.R900014200 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Feng W, Liang J, Wang B, Chen J (2019) Improvement of kojic acid production in Aspergillus oryzae AR-47 mutant strain by combined mutagenesis. Bioprocess Biosyst Eng.  https://doi.org/10.1007/s00449-019-02079-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270.  https://doi.org/10.1007/s00253-010-2672-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270CrossRefGoogle Scholar
  16. 16.
    Guerinot ML (2000) The ZIP family of metal transporters. Biochem Biophys Acta 1465:190–198CrossRefGoogle Scholar
  17. 17.
    Ivanov R, Bauer P (2016) Sequence and coexpression analysis of iron-regulated ZIP transporter genes reveals crossing points between iron acquisition strategies in green algae and land plants. Plant Soil 418:61–73.  https://doi.org/10.1007/s11104-016-3128-2 CrossRefGoogle Scholar
  18. 18.
    Jandric Z, Gregori C, Klopf E, Radolf M, Schuller C (2013) Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol 4:350.  https://doi.org/10.3389/fmicb.2013.00350 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Janevska S, Tudzynski B (2018) Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol 102:615–630.  https://doi.org/10.1007/s00253-017-8679-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Jung WH (2015) The zinc transport systems and their regulation in pathogenic fungi. Mycobiology 43:179–183.  https://doi.org/10.5941/MYCO.2015.43.3.179 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumanovics A, Poruk KE, Osborn KA, Ward DM, Kaplan J (2006) YKE4 (YIL023C) encodes a bidirectional zinc transporter in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 281:22566–22574.  https://doi.org/10.1074/jbc.M604730200 CrossRefPubMedGoogle Scholar
  22. 22.
    Leonhardt T, Sacky J, Kotrba P (2018) Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula atropurpurea. Biometals 31:255–266.  https://doi.org/10.1007/s10534-018-0085-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Leonhardt T, Simek P, Kotrba P (2014) Characterization of two members of the ZIP family of Zn transporters expressed in Zn accumulating fungus Russula atropurpurea. J Biol Inorg Chem 19:S773–S773CrossRefGoogle Scholar
  24. 24.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  25. 25.
    Locatelli FM, Goo KS, Ulanova D (2016) Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 8:469–480.  https://doi.org/10.1039/c5mt00324e CrossRefPubMedGoogle Scholar
  26. 26.
    Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161.  https://doi.org/10.1038/nature04300 CrossRefPubMedGoogle Scholar
  27. 27.
    Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183.  https://doi.org/10.1093/dnares/dsn020 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Marui J, Yamane N, Ohashi-Kunihiro S, Ando T, Terabayashi Y, Sano M, Ohashi S, Ohshima E, Tachibana K, Higa Y, Nishimura M, Koike H, Machida M (2011) Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcriptional activator and induced by kojic acid at the transcriptional level. J Biosci Bioeng 112:40–43.  https://doi.org/10.1016/j.jbiosc.2011.03.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Maruyama J, Kitamoto K (2011) Targeted gene disruption in Koji mold Aspergillus oryzae. Methods Mol Biol 765:447–456.  https://doi.org/10.1007/978-1-61779-197-0_27 CrossRefPubMedGoogle Scholar
  30. 30.
    Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381.  https://doi.org/10.1093/jxb/ers315 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Potocki S, Valensin D, Kozlowski H (2014) The specificity of interaction of Zn2+, Ni2+ and Cu2+ ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans 43:10215–10223.  https://doi.org/10.1039/c4dt00903g CrossRefPubMedGoogle Scholar
  32. 32.
    Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13.  https://doi.org/10.1128/ec.3.1.1-13.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sanchez JF, Somoza AD, Keller NP, Wang CC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371.  https://doi.org/10.1039/c2np00084a CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sano M (2016) Aspergillus oryzae nrtA affects kojic acid production. Biosci Biotechnol Biochem 80:1776–1780.  https://doi.org/10.1080/09168451.2016.1176517 CrossRefPubMedGoogle Scholar
  35. 35.
    Schothorst J, Zeebroeck GV, Thevelein JM (2017) Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae. Microbial cell 4:74–89.  https://doi.org/10.15698/mic2017.03.561 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H (2008) SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 70:27–43.  https://doi.org/10.1111/j.1365-2958.2008.06376.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tamayo E, Gomez-Gallego T, Azcon-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547.  https://doi.org/10.3389/fpls.2014.00547 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961.  https://doi.org/10.1016/j.fgb.2010.08.014 CrossRefPubMedGoogle Scholar
  39. 39.
    Vicentefranqueira R, Moreno MA, Leal F, Calera JA (2005) The zrfA and zrfB genes of Aspergillus fumigatus encode the zinc transporter proteins of a zinc uptake system induced in an acid, zinc-depleted environment. Eukaryot Cell 4:837–848.  https://doi.org/10.1128/EC.4.5.837-848.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Weinberg ED (1990) Roles of trace metals in transcriptional control of microbial secondary metabolism. Biol Met 2:191–196CrossRefGoogle Scholar
  41. 41.
    Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A (2014) Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact 13:71.  https://doi.org/10.1186/1475-2859-13-71 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yasmin S, Abt B, Schrettl M, Moussa TA, Werner ER, Haas H (2009) The interplay between iron and zinc metabolism in Aspergillus fumigatus. Fungal Genet Biol 46:707–713.  https://doi.org/10.1016/j.fgb.2009.05.003 CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458CrossRefGoogle Scholar
  44. 44.
    Zhao H, Eide D (1996) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271:23203–23210CrossRefGoogle Scholar
  45. 45.
    Zhong Y, Lu X, Xing L, Ho SWA, Kwan HS (2018) Genomic and transcriptomic comparison of Aspergillus oryzae strains: a case study in soy sauce koji fermentation. J Ind Microbiol Biotechnol 45:839–853.  https://doi.org/10.1007/s10295-018-2059-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Zhe Zhang
    • 1
  • Junxia Fan
    • 1
  • Chuannan Long
    • 1
  • Bin He
    • 1
  • Zhihong Hu
    • 1
  • Chunmiao Jiang
    • 1
  • Yongkai Li
    • 1
  • Long Ma
    • 1
  • Jingshang Wen
    • 1
  • Xiaojin Zou
    • 1
  • Yuan Chen
    • 1
  • Zhenxiang Ge
    • 1
  • Bin Zeng
    • 1
    Email author
  1. 1.Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina

Personalised recommendations