Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 46, Issue 12, pp 1669–1683 | Cite as

Genetically encoded FRET-based optical sensor for Hg2+ detection and intracellular imaging in living cells

  • Neha Soleja
  • Mohamad Aman Jairajpuri
  • Aarfa Queen
  • Mohd. MohsinEmail author
Fermentation, Cell Culture and Bioengineering - Original Paper
  • 156 Downloads

Abstract

Due to the potential toxicity of mercury, there is an immediate need to understand its uptake, transport and flux within living cells. Conventional techniques used to analyze Hg2+ are invasive, involve high cost and are less sensitive. In the present study, a highly efficient genetically encoded mercury FRET sensor (MerFS) was developed to measure the cellular dynamics of Hg2+ at trace level in real time. To construct MerFS, the periplasmic mercury-binding protein MerP was sandwiched between enhanced cyan fluorescent protein (ECFP) and venus. MerFS is pH stable, offers a measurable fluorescent signal and binds to Hg2+ with high sensitivity and selectivity. Mutant MerFS-51 binds with an apparent affinity (Kd) of 5.09 × 10−7 M, thus providing a detection range for Hg2+ quantification between 0.210 µM and 1.196 µM. Furthermore, MerFS-51 was targeted to Escherichia coli (E. coli), yeast and human embryonic kidney (HEK)-293T cells that allowed dynamic measurement of intracellular Hg2+ concentration with a highly responsive saturation curve, proving its potential application in cellular systems.

Keywords

Mercury Fluorescent proteins Genetically encoded FRET Nanosensors 

Notes

Acknowledgements

The first author (NS) is thankful to University Grants Commission for Senior Research Fellowship. Financial Assistant in the form of research grant under nanobiotechnology scheme (No. BT/PR22248/NNT/28/1272/2017) from Department of Biotechnology, Govt. of India for conducting this research work is gratefully acknowledged.

Author contributions

NS and MM designed the study and prepared the original manuscript. NS and MM conducted all in vitro and cellular experiments and analyzed the data. NS and MM did the live cell imaging of yeast and HEK cells and analyzed the data. AQ performed the cytotoxicity test. NS, MM and MAJ revised the manuscript. All authors were engaged in commenting on the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10295_2019_2235_MOESM1_ESM.doc (632 kb)
Supplementary material 1 (DOC 631 kb)

References

  1. 1.
    Ettema TJ, Huynen MA, de Vos WM, van der Oost J (2003) TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28(4):170–173.  https://doi.org/10.1016/S0968-0004(03)00037-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Wanekaya AK (2011) Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136:4383–4391.  https://doi.org/10.1039/c1an15574a CrossRefPubMedGoogle Scholar
  3. 3.
    Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8.  https://doi.org/10.1016/j.jhazmat.2007.09.101 CrossRefPubMedGoogle Scholar
  4. 4.
    Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51(6):730–750.  https://doi.org/10.1007/s002530051 CrossRefGoogle Scholar
  5. 5.
    Aragay G, Pons J, Merkoçi A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458.  https://doi.org/10.1021/cr100383r CrossRefPubMedGoogle Scholar
  6. 6.
    Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83(6):2324–2329.  https://doi.org/10.1021/ac103236g CrossRefPubMedGoogle Scholar
  7. 7.
    Opella SJ, DeSilva TM, Veglia G (2002) Structural biology of metal-binding sequences. Curr Opin Chem Biol 6(2):217–223.  https://doi.org/10.1016/S1367-5931(02)00314-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Saleem M, Rafiq M, Hanif M (2017) Organic material based fluorescent sensor for Hg2+: a brief review on recent development. J Fluoresc 27(1):31–58.  https://doi.org/10.1007/s10895-016-1933-x CrossRefPubMedGoogle Scholar
  9. 9.
    WHO (2005) Mercury in Drinking-water. (Vol. WHO/SDE/WSH/05.08/10): World Health OrganizationGoogle Scholar
  10. 10.
    Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37:35–48.  https://doi.org/10.1007/s10653-014-9628-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS (2016) Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med 28:5.  https://doi.org/10.1186/s40557-015-0086-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zeyaullah M, Islam B, Ali A (2010) Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river. Afr J Biotechnol 9(24):3510–3514Google Scholar
  13. 13.
    Jiqu H, Qixia Y (2015) A core-shell structured inorganic-organic hybrid nanocomposite for Hg(II) sensing and removal. Spectrochim Acta A Mol Biomol Spectrosc 149:487–493.  https://doi.org/10.1016/j.saa.2015.04.075 CrossRefPubMedGoogle Scholar
  14. 14.
    Chapleau RR, Blomberg R, Ford PC, Sagermann M (2008) Design of a highly specific and noninvasive biosensor suitable for real-time in vivo imaging of mercury (II) uptake. Protein Sci 17(4):614–622.  https://doi.org/10.1110/ps.073358908 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kobal AB, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I, Stibilj V, Arneric N, Kobal D, Osredkar J (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17(4):261–274.  https://doi.org/10.1016/S0946-672X(04)80028-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Srikanth K, Ahmad I, Rao JV, Trindade T, Duarte AC, Pereira E (2014) Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comp Biochem Phys C 162:7–14.  https://doi.org/10.1016/j.cbpc.2014.02.007 CrossRefGoogle Scholar
  17. 17.
    Linšak Ž, Linšak DT, Špirić Z, Srebočan E, Glad M, Milin Č (2013) Effects of mercury on glutathione and glutathione-dependent enzymes in hares (Lepus europaeus Pallas). J Environ Sci Health A Tox Hazard Subst Environ Eng 48(11):1325–1332.  https://doi.org/10.1080/10934529.2013.781869 CrossRefPubMedGoogle Scholar
  18. 18.
    Malcik N, Oktar O, Ozser ME, Caglar P, Bushby L, Vaughan A, Kuswandi B, Narayanaswamy R (1998) Immobilised reagents for optical heavy metal ions sensing. Sens Actuators B Chem 53(3):211–221.  https://doi.org/10.1016/S0925-4005(99)00004-0 CrossRefGoogle Scholar
  19. 19.
    Gumpu MB, Sethuraman S, Krishnan UM, Bosco J, Rayappan B (2015) A review on detection of heavy metal ions in water – An electrochemical approach. Sens Actuators B Chem 213:515–533.  https://doi.org/10.1016/j.snb.2015.02.122 CrossRefGoogle Scholar
  20. 20.
    Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244.  https://doi.org/10.1016/S0003-2670(98)00725-9 CrossRefGoogle Scholar
  21. 21.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens Actuators B Chem 186:451–460.  https://doi.org/10.1016/j.snb.2013.06.051 CrossRefGoogle Scholar
  22. 22.
    Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csöregi E (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18(5–6):547–553.  https://doi.org/10.1016/S0956-5663(03)00026-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20(8):1643–1647.  https://doi.org/10.1016/j.bios.2004.08.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Nevado JJ, Martin-Doimeadios RC, Bernardo FJ, Moreno MJ (2005) Determination of mercury species in fish reference materials by gas chromatography-atomic fluorescence detection after closed-vessel microwave-assisted extraction. J Chromatogr A 1093(1–2):21–28.  https://doi.org/10.1016/j.chroma.2005.07.054 CrossRefPubMedGoogle Scholar
  25. 25.
    Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127(35):12351–12356.  https://doi.org/10.1021/ja0517724 CrossRefPubMedGoogle Scholar
  26. 26.
    Ko SK, Yang YK, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J Am Chem Soc 128(43):14150–14155.  https://doi.org/10.1021/ja065114a CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127(46):16030–16031.  https://doi.org/10.1021/ja0557987 CrossRefPubMedGoogle Scholar
  28. 28.
    Song J, Huai M, Wang C, Xu Z, Zhao Y, Ye Y (2015) A new FRET ratiometric fluorescent chemosensor for Hg2+ and its application in living EC 109 cells. Spectrochim Acta A Mol Biomol Spectrosc 139:549–554.  https://doi.org/10.1016/j.saa.2014.12.073 CrossRefPubMedGoogle Scholar
  29. 29.
    Hu B, Hu LL, Chen ML, Wang JH (2013) A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron 49:499–505.  https://doi.org/10.1016/j.bios.2013.06.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Ma C, Zeng F, Huang L, Wu S (2011) FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. J Phys Chem B 115(5):874–882.  https://doi.org/10.1021/jp109594h CrossRefPubMedGoogle Scholar
  31. 31.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775.  https://doi.org/10.1038/nmeth.1248 CrossRefPubMedGoogle Scholar
  32. 32.
    Rowland CE, Brown CW III, Medintz IL, Delehanty JB (2015) Intracellular FRET-based probes: a review. Methods Appl Fluores 3(4):042006.  https://doi.org/10.1088/2050-6120/3/4/042006 CrossRefGoogle Scholar
  33. 33.
    Ma L, Yang F, Zheng J (2014) Application of fluorescence resonance energy transfer in protein studies. J Mol Struct 1077:87–100.  https://doi.org/10.1016/j.molstruc.2013.12.071 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gupta S, Sarkar S, Katranidis A, Bhattacharya J (2019) Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: a plasmid DNA-based approach. ACS Omega 4:9480–9487.  https://doi.org/10.1021/acsomega.9b00205 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hwang E, Song J, Zhang J (2019) Integration of nanomaterials and bioluminescence resonance energy transfer techniques for sensing biomolecules. Biosensors 9(1):42.  https://doi.org/10.3390/bios9010042 CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601.  https://doi.org/10.1021/cr400546e CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    White BR, Liljestrand HM, Holcombe JA (2008) A ‘turn-on’ FRET peptide sensor based on the mercury binding protein MerP. Analyst 133(1):65–70.  https://doi.org/10.1039/b711777a CrossRefPubMedGoogle Scholar
  38. 38.
    DeSilva TM, Veglia G, Opella SJ (2005) Solution Structures of the Reduced and Cu(I) Bound Forms of the First Metal Binding Sequence of ATP7A Associated with Menkes Disease. Proteins 61(4):1038–1049.  https://doi.org/10.1002/prot.20639 CrossRefPubMedGoogle Scholar
  39. 39.
    DeSilva TM, Veglia G, Porcelli F, Prantner AM, Opella SJ (2002) Selectivity in heavy metal- binding to peptides and proteins. Biopolymers 64(4):189–197.  https://doi.org/10.1002/bip.10149 CrossRefPubMedGoogle Scholar
  40. 40.
    Vinkenborg JL, van Duijnhoven SM, Merkx M (2011) Reengineering of a fluorescent zinc sensor protein yields the first genetically encoded cadmium probe. Chem Commun (Camb) 47(43):11879–11881.  https://doi.org/10.1039/c1cc14944j CrossRefGoogle Scholar
  41. 41.
    Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA 102(24):8740–8745.  https://doi.org/10.1073/pnas.0503274102 CrossRefPubMedGoogle Scholar
  42. 42.
    Queen A, Khan P, Idrees D, Azam A, Hassan MI (2018) Biological evaluation of p-toluene sulphonylhydrazone as carbonic anhydrase IX inhibitors: an approach to fight hypoxia-induced tumors. Int J Biol Macromol 106:840–850.  https://doi.org/10.1016/j.ijbiomac.2017.08.082 CrossRefPubMedGoogle Scholar
  43. 43.
    Khan P, Rahman S, Queen A, Manzoor S, Naz F, Hasan GM, Luqman S, Kim J, Islam A, Ahmad F, Hassan MI (2017) Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: in silico and in vitro studies. Sci Rep 7(1):9470.  https://doi.org/10.1038/s41598-017-09941-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Voura M, Khan P, Thysiadis S, Katsamakas S, Queen A, Hasan GM, Ali S, Sarli V, Hassan MI (2019) Probing the inhibition of microtubule affinity regulating kinase 4 by N-substituted acridones. Sci Rep 9(1):1676.  https://doi.org/10.1038/s41598-018-38217-8 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ko W, Kim S, Lee HS (2017) Engineering a periplasmic binding protein for amino acid sensors with improved binding properties. Org Biomol Chem 15(41):8761–8769.  https://doi.org/10.1039/c7ob02165h CrossRefPubMedGoogle Scholar
  46. 46.
    Richarme G, Caldas TD (1997) Chaperone Properties of the Bacterial Periplasmic Substrate-binding Proteins. J Biol Chem 272:15607–15612.  https://doi.org/10.1074/jbc.272.25.15607 CrossRefPubMedGoogle Scholar
  47. 47.
    Chu BCH, Otten R, Krewulak KD, Mulder FAA, Vogel HJ (2014) The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 289(42):29219–29234.  https://doi.org/10.1074/jbc.M114.564021 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11(11):2655–2675.  https://doi.org/10.1110/ps.021860 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shosham MS, Tshuva EY (2011) The MXCXXC class of metallochaperone proteins: model studies. Chem Soc 40(11):5282–5292.  https://doi.org/10.1039/c1cs15086c CrossRefGoogle Scholar
  50. 50.
    Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. j health Sci 52(3):199–204.  https://doi.org/10.1248/jhs.52.199 CrossRefGoogle Scholar
  51. 51.
    Veglia G, Porcelli F, DeSilva T, Prantner A, Opella SJ (2000) The structure of the metal-binding motif GMTCAAC is similar in an 18-residue linear peptide and the mercury binding protein MerP. J Am Chem Soc 122(10):2389–2390.  https://doi.org/10.1021/ja992908z CrossRefGoogle Scholar
  52. 52.
    Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB (2005) Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 33(1):287–290.  https://doi.org/10.1042/BST0330287 CrossRefPubMedGoogle Scholar
  53. 53.
    Mohsin M, Ahmad A, Iqbal M (2015) FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37(10):1919–1928.  https://doi.org/10.1007/s10529-015-1873-6 CrossRefPubMedGoogle Scholar
  54. 54.
    Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155(1):268–278.  https://doi.org/10.1099/mic.0.022038-0 CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12):906–918.  https://doi.org/10.1038/nrm976 CrossRefPubMedGoogle Scholar
  56. 56.
    Steele RA, Opella SJ (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36(23):6885–6895.  https://doi.org/10.1021/bi9631632 CrossRefPubMedGoogle Scholar
  57. 57.
    Kiyono M, Omura T, Fujimori H, Pan-Hou H (1995) Lack of involvement of merT and merP in methylmercury transport in mercury resistant Pseudomonas K-62. FEMS Microbiol Lett 128(3):301–306.  https://doi.org/10.1111/j.1574-6968.1995.tb07540.x CrossRefPubMedGoogle Scholar
  58. 58.
    Chang CC, Lin LY, Zou XW, Huang CC, Chan NL (2015) Structural basis of the mercury (II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 43(15):7612–7623.  https://doi.org/10.1093/nar/gkv681 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98(5):2437–2442.  https://doi.org/10.1073/pnas.051631298 CrossRefPubMedGoogle Scholar
  60. 60.
    Ahmad M, Mohsin M, Iqrar S, Manzoor O, Siddiqi TO, Ahmad A (2018) Live cell imaging of vitamin B12 dynamics by genetically encoded fluorescent nanosensor. Sens Actuators B Chem 257:866–874.  https://doi.org/10.1016/j.snb.2017.11.030 CrossRefGoogle Scholar
  61. 61.
    Soleja N, Manzoor O, Nandal P, Mohsin M (2019) FRET-based nanosensors for monitoring and quantification of alcohols in living cells. Org Biomol Chem 17(9):2413–2422.  https://doi.org/10.1039/c8ob03208d CrossRefPubMedGoogle Scholar
  62. 62.
    Manzoor O, Soleja N, Khan P, Hassan MI, Mohsin M (2019) Visualization of thiamine in living cells using genetically encoded fluorescent nanosensor. Biochem Eng J 146:170–178.  https://doi.org/10.1016/j.bej.2019.03.018 CrossRefGoogle Scholar
  63. 63.
    Ahmad M, Ameen S, Siddiqi TO, Khan P, Ahmad A (2016) Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor. Biosens Bioelectron 86:169–175.  https://doi.org/10.1016/j.bios.2016.06.049 CrossRefPubMedGoogle Scholar
  64. 64.
    San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF (2013) A Genetically Encoded FRET Lactate Sensor and Its Use to Detect the Warburg Effect in Single Cancer Cells. PLoS ONE 8(2):e57712.  https://doi.org/10.1371/journal.pone.0057712 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231.  https://doi.org/10.1016/j.jtemb.2019.05.003 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Neha Soleja
    • 1
  • Mohamad Aman Jairajpuri
    • 1
  • Aarfa Queen
    • 2
  • Mohd. Mohsin
    • 1
    Email author
  1. 1.Department of BiosciencesJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of ChemistryJamia Millia IslamiaNew DelhiIndia

Personalised recommendations