Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 46, Issue 11, pp 1583–1601 | Cite as

Microbial production of 2,3-butanediol for industrial applications

  • Chan Woo Song
  • Jong Myoung Park
  • Sang Chul Chung
  • Sang Yup Lee
  • Hyohak SongEmail author
Bioenergy/Biofuels/Biochemicals - Review
  • 299 Downloads

Abstract

2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based production process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-BD production are reviewed and their potentials for use in the commercial sector are discussed.

Keywords

2,3-Butanediol Metabolic engineering Fermentation Separation Commercial sector 

Notes

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (No. 10050407) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. 1.
    Harden A, Walpole G (1906) 2,3-Butylene glycol fermentation by Aerobacter aerogenes. Proc R Soc Lond 77:399–405CrossRefGoogle Scholar
  2. 2.
    Othmer D, Bergen W, Shlechter N, Bruins P (1945) Liquid–liquid extraction data. Ind Eng Chem Res 37:890–894CrossRefGoogle Scholar
  3. 3.
    Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:53.  https://doi.org/10.1186/s13065-014-0053-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    White WC (2007) Butadiene production process overview. Chem Biol Interact 166:10–14.  https://doi.org/10.1016/j.cbi.2007.01.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Gräfje H, Körnig W, Weitz H, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2012) Butanediols, butenediol, and butynediol. In: Ullmann’s encyclopedia of industrial chemical.  https://doi.org/10.1002/14356007.a04_455
  6. 6.
    Yang Z, Zhang Z (2019) Recent advances on production of 2,3-butanediol using engineered microbes. Biotechnol Adv 37:569–578.  https://doi.org/10.1016/j.biotechadv.2018.03.019 CrossRefPubMedGoogle Scholar
  7. 7.
    Cortes-Barco AM, Hsiang T, Goodwin PH (2010) Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann Appl Biol 157:179–189.  https://doi.org/10.1111/j.1744-7348.20 CrossRefGoogle Scholar
  8. 8.
    Baek HS, Woo BY, Yoo SJ, Joo YH, Shin SS, Oh MH, Lee JH, Kim SY (2016) Composition containing meso-2,3-butanediol. WO 2016064180 A1Google Scholar
  9. 9.
    Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075.  https://doi.org/10.1094/MPMI-21-8-1067 CrossRefPubMedGoogle Scholar
  10. 10.
    Garg S, Jain A (1995) Fermentative production of 2,3-butnaediol: a review. Bioresour Technol 51:103–109.  https://doi.org/10.1016/0960-8524(94)00136-O CrossRefGoogle Scholar
  11. 11.
    Cortes-Barco AM, Goodwin PH, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653CrossRefGoogle Scholar
  12. 12.
    Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18.  https://doi.org/10.1007/s002530000486 CrossRefPubMedGoogle Scholar
  13. 13.
    Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv 27:715–725.  https://doi.org/10.1016/j.biotechadv.2009.05.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140.  https://doi.org/10.1080/10408410701364604 CrossRefPubMedGoogle Scholar
  15. 15.
    Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364.  https://doi.org/10.1016/j.biotechadv.2011.01.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Ui S, Mimura A, Ohkuma M, Kudo T (1999) Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase. Lett Appl Microbiol 28:457–460.  https://doi.org/10.1046/j.1365-2672.1999.00560.x CrossRefPubMedGoogle Scholar
  17. 17.
    Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P (2016) Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem 18:4693–4703.  https://doi.org/10.1039/C6GC01023G CrossRefGoogle Scholar
  18. 18.
    Magee R, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161.  https://doi.org/10.1016/S0065-2164(08)70079-0 CrossRefGoogle Scholar
  19. 19.
    Yang Z, Zhang Z (2018) Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol Biofuels 11:35.  https://doi.org/10.1186/s13068-018-1031-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075.  https://doi.org/10.1094/MPMI-21-8-1067 CrossRefPubMedGoogle Scholar
  21. 21.
    Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690.  https://doi.org/10.1007/s00018-012-0945-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR (2016) Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep.  https://doi.org/10.1038/srep36769 (Article number: 36769) CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hohn-Bentz H, Radler F (1978) Bacterial 2,3-butanediol dehydrogenases. Arch Microbiol 116:197–203.  https://doi.org/10.1007/BF00406037 CrossRefPubMedGoogle Scholar
  24. 24.
    Kim B, Lee S, Park J, Lu M, Oh M, Kim Y, Lee J (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J Microbiol Biotechnol 22:1258–1263CrossRefGoogle Scholar
  25. 25.
    Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7:44.  https://doi.org/10.1186/1754-6834-7-44 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rathnasingh C, Park JM, Kim DK, Song H, Chang YK (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol Lett 38:975–982.  https://doi.org/10.1007/s10529-016-2062-y CrossRefPubMedGoogle Scholar
  27. 27.
    Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57.  https://doi.org/10.1007/s00253-008-1732-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee S, Kim B, Yang J, Jeong D, Park S, Lee J (2015) A non-pathogenic and optically high concentrated (R, R)-2,3-butanediol biosynthesizing Klebsiella strain. J Biotechnol 209:7–13.  https://doi.org/10.1016/j.jbiotec.2015.06.385 CrossRefPubMedGoogle Scholar
  29. 29.
    Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758.  https://doi.org/10.1007/s00253-009-2222-2 CrossRefPubMedGoogle Scholar
  30. 30.
    Kim DK, Rathnasingh C, Song H, Lee HJ, Seung D, Chang YK (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192.  https://doi.org/10.1016/j.jbiosc.2013.02.021 CrossRefPubMedGoogle Scholar
  31. 31.
    Park JM, Song H, Lee HJ, Seung D (2013) In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol 40:1057–1066.  https://doi.org/10.1007/s10295-013-1298-y CrossRefPubMedGoogle Scholar
  32. 32.
    Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S (2015) Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng 30:16–26.  https://doi.org/10.1016/j.ymben.2015.04.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Jung MY, Ng CY, Song H, Lee J, Oh MK (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol 95:461–469.  https://doi.org/10.1007/s00253-012-3883-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C, Xu P (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27.  https://doi.org/10.1016/j.ymben.2014.11.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Rao B, Zhang LY, Sun J, Su G, Wei D, Chu J, Zhu J, Shen Y (2012) Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol 93:2147–2159.  https://doi.org/10.1007/s00253-011-3608-5 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967.  https://doi.org/10.1016/j.biortech.2009.10.052 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang L, Sun J, Hao Y, Zhu J, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37:857–862.  https://doi.org/10.1007/s10295-010-0733-6 CrossRefPubMedGoogle Scholar
  38. 38.
    Li L, Zhang L, Li K, Wang Y, Gao C, Han B, Ma C, Xu P (2013) A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6:123.  https://doi.org/10.1186/1754-6834-6-123 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723.  https://doi.org/10.1007/s00253-013-4981-z CrossRefPubMedGoogle Scholar
  40. 40.
    Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuels 9:90.  https://doi.org/10.1186/s13068-016-0502-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244.  https://doi.org/10.1016/j.biortech.2012.08.047 CrossRefPubMedGoogle Scholar
  42. 42.
    Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51:650–658.  https://doi.org/10.1002/jobm.201100033 CrossRefPubMedGoogle Scholar
  43. 43.
    Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013) Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 8:e76149.  https://doi.org/10.1371/journal.pone.0076149 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281.  https://doi.org/10.1016/j.biortech.2013.07.081 CrossRefPubMedGoogle Scholar
  45. 45.
    Gonzalez E, Fernandez MR, Larroy C, Sola L, Pericas MA, Pares X, Biosca JA (2000) Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem 275:35876–35885.  https://doi.org/10.1074/jbc.M003035200 CrossRefPubMedGoogle Scholar
  46. 46.
    Kim S, Hahn JS (2015) Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101.  https://doi.org/10.1016/j.ymben.2015.07.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 23:22–33.  https://doi.org/10.1016/j.ymben.2014.02.004 CrossRefPubMedGoogle Scholar
  48. 48.
    Nozzi NE, Case AE, Carroll AL, Atsumi S (2017) Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.7b00157 CrossRefPubMedGoogle Scholar
  49. 49.
    Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005.  https://doi.org/10.1080/07388551.2017.1299680 CrossRefPubMedGoogle Scholar
  50. 50.
    Bialkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200.  https://doi.org/10.1007/s11274-016-2161-x CrossRefPubMedGoogle Scholar
  51. 51.
    Gao J, Xu H, Li QJ, Feng XH, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol 101:7087–7093.  https://doi.org/10.1016/j.biortech.2010.03.143 CrossRefPubMedGoogle Scholar
  52. 52.
    Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665.  https://doi.org/10.1007/s00253-009-2004-x CrossRefPubMedGoogle Scholar
  53. 53.
    Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One 7:e40442.  https://doi.org/10.1371/journal.pone.0040442 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I (2012) Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 7:293–303.  https://doi.org/10.1002/biot.201100122 CrossRefPubMedGoogle Scholar
  55. 55.
    Jung MY, Park BS, Lee J, Oh MK (2013) Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 139:21–27.  https://doi.org/10.1016/j.biortech.2013.04.003 CrossRefPubMedGoogle Scholar
  56. 56.
    Xin Fengxue, Basu Anindya, Weng Michelle Cheung, Yang Kun-Lin, He J (2016) Production of 2,3-butanediol from sucrose by a klebsiella species. Bioenergy Res 9:15–22.  https://doi.org/10.1007/s12155-015-9653-7 CrossRefGoogle Scholar
  57. 57.
    Song CW, Rathnasingh C, Park JM, Lee J, Song H (2018) Isolation and evaluation of Bacillus strains for industrial production of 2,3-butanediol. J Microbiol Biotechnol 28:409–417.  https://doi.org/10.4014/jmb.1710.10038 CrossRefPubMedGoogle Scholar
  58. 58.
    Pervez S, Aman A, Iqbal S, Siddiqui NN, Ul Qader SA (2014) Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnol 14:49.  https://doi.org/10.1186/1472-6750-14-49 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26:845–848.  https://doi.org/10.1023/B:BILE.0000025889.25364.4b CrossRefPubMedGoogle Scholar
  60. 60.
    Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852.  https://doi.org/10.1007/s00253-008-1823-5 CrossRefPubMedGoogle Scholar
  61. 61.
    Li L, Chen C, Li K, Wang Y, Gao C, Ma C, Xu P (2014) Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl Environ Microbiol 80:6458–6464.  https://doi.org/10.1128/AEM.01802-14 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Champluvier B, Francart B, Rouxhet PG (1989) Co-immobilization by adhesion of beta-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca: conversion of lactose into 2,3-butanediol. Biotechnol Bioeng 34:844–853.  https://doi.org/10.1002/bit.260340614 CrossRefPubMedGoogle Scholar
  63. 63.
    Ahn JH, Sang BI, Um Y (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 102:4934–4937.  https://doi.org/10.1016/j.biortech.2011.01.046 CrossRefPubMedGoogle Scholar
  64. 64.
    da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39.  https://doi.org/10.1016/j.biotechadv.2008.07.006 CrossRefPubMedGoogle Scholar
  65. 65.
    Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146.  https://doi.org/10.1186/s13068-015-0336-6 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Thomsen MH, Thygesen A, Thomsen AB (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83:447–455.  https://doi.org/10.1007/s00253-009-1867-1 CrossRefPubMedGoogle Scholar
  67. 67.
    Bialkowska AM, Gromek E, Krysiak J, Sikora B, Kalinowska H, Jedrzejczak-Krzepkowska M, Kubik C, Lang S, Schutt F, Turkiewicz M (2015) Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J Ind Microbiol Biotechnol 42:1609–1621.  https://doi.org/10.1007/s10295-015-1697-3 CrossRefPubMedGoogle Scholar
  68. 68.
    Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970.  https://doi.org/10.1007/s00253-010-2557-8 CrossRefPubMedGoogle Scholar
  69. 69.
    Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the U.S. Department of Energy’s Research and Development Activities for bioethanol. Biotechnol Prog 15:817–827.  https://doi.org/10.1021/bp990110d CrossRefPubMedGoogle Scholar
  70. 70.
    Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P (2014) Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol 170:256–261.  https://doi.org/10.1016/j.biortech.2014.07.101 CrossRefPubMedGoogle Scholar
  71. 71.
    Kang IY, Park JM, Hong WK, Kim YS, Jung YR, Kim SB, Heo SY, Lee SM, Kang JY, Oh BR, Kim DH, Seo JW, Kim CH (2015) Enhanced production of 2,3-butanediol by a genetically engineered Bacillus sp. BRC1 using a hydrolysate of empty palm fruit bunches. Bioprocess Biosyst Eng 38:299–305.  https://doi.org/10.1007/s00449-014-1268-4 CrossRefPubMedGoogle Scholar
  72. 72.
    Mazumdar S, Lee J, Oh MK (2013) Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 136:329–336.  https://doi.org/10.1016/j.biortech.2013.03.013 CrossRefPubMedGoogle Scholar
  73. 73.
    Waldron KW (2010) Bioalcohol production: biochemical conversion of lignocellulosic biomass, 1st edn. Woodhead Pulishing Series in Energy, SawstonCrossRefGoogle Scholar
  74. 74.
    Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from d-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–369.  https://doi.org/10.1002/bit.260260411 CrossRefPubMedGoogle Scholar
  75. 75.
    Sablayrolles JM, Goma G (1984) Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioeng 26:148–155.  https://doi.org/10.1002/bit.260260207 CrossRefPubMedGoogle Scholar
  76. 76.
    Kosaric N, Magee RJ, Blaszczyk R (1992) Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q 6:145–152Google Scholar
  77. 77.
    Beronio PB Jr, Tsao GT (1993) Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioeng 42:1263–1269.  https://doi.org/10.1002/bit.260421102 CrossRefPubMedGoogle Scholar
  78. 78.
    Fages J, Mulard D, Rouquet J, Wilhelm J (1986) 2,3-Butanediol production from Jerusalem artichoke, Helianfhus fuberosus, and by Bacillus polymyxa ATCC 12321. Optimization of kLa profile. Appl Microbiol Biotechnol 25:197–202CrossRefGoogle Scholar
  79. 79.
    Zeng AP, Byun TG, Posten C, Deckwer WD (1994) Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioeng 44:1107–1114.  https://doi.org/10.1002/bit.260440912 CrossRefPubMedGoogle Scholar
  80. 80.
    Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009) Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100:3410–3414.  https://doi.org/10.1016/j.biortech.2009.02.031 CrossRefPubMedGoogle Scholar
  81. 81.
    Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2, 3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:1133–1138.  https://doi.org/10.1023/A:1005324403186 CrossRefGoogle Scholar
  82. 82.
    Van Houdt R, Aertsen A, Michiels CW (2007) Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol 158:379–385.  https://doi.org/10.1016/j.resmic.2006.11.015 CrossRefPubMedGoogle Scholar
  83. 83.
    Yu EK, Saddler JN (1982) Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol 44:777–784.  https://doi.org/10.1155/2011/636170 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90:661–664CrossRefGoogle Scholar
  85. 85.
    Perego P, Converti A, Del Borghi M (2003) Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresour Technol 89:125–131.  https://doi.org/10.1016/S0960-8524(03)00063-4 CrossRefPubMedGoogle Scholar
  86. 86.
    Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87:943–949.  https://doi.org/10.1007/s00253-010-2545-z CrossRefPubMedGoogle Scholar
  87. 87.
    Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354.  https://doi.org/10.1007/s00253-008-1458-6 CrossRefPubMedGoogle Scholar
  88. 88.
    Grover BP, Garg SK, Verma J (1990) Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J Microbiol Biotechnol 6:328–332.  https://doi.org/10.1007/BF01201306 CrossRefPubMedGoogle Scholar
  89. 89.
    Anvari M, Safari Motlagh MR (2011) Enhancement of 2,3-butanediol production by Klebsiella oxytoca PTCC 1402. J Biomed Biotechnol 2011:636170.  https://doi.org/10.1155/2011/636170 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Long SK, Patrick R (1963) The present status of the 2,3-butylene glycol fermentation. Adv Appl Microbiol 5:135–155.  https://doi.org/10.1016/S0065-2164(08)70009-1 CrossRefPubMedGoogle Scholar
  91. 91.
    Dettwiler B, Dunn IJ, Heinzle E, Prenosil JE (1993) A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotechnol Bioeng 41:791–800.  https://doi.org/10.1002/bit.260410805 CrossRefPubMedGoogle Scholar
  92. 92.
    Dziewulski DM, Haughney HA, Das KP, Nauman EB (1986) Fed-batch with biomass recycle and batch production of 2,3-butanediol from glucose by Bacillus polymyxa. J Biotechnol 4:171–180.  https://doi.org/10.1016/0168-1656(86)90044-1 CrossRefGoogle Scholar
  93. 93.
    Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249–1256.  https://doi.org/10.1007/s00253-007-0957-1 CrossRefPubMedGoogle Scholar
  94. 94.
    Wheat J, Xleslie J, Tomkins R, Mitton H, Scott D, Ledingham G (1948) Production and properties of 2,3-butanediol. XXVIII. Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa. Can J Res 26:469–496CrossRefGoogle Scholar
  95. 95.
    Shao P, Kumar A (2009) Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme. J Membr Sci 329:160–168.  https://doi.org/10.1016/j.memsci.2008.12.033 CrossRefGoogle Scholar
  96. 96.
    Sridhar S (1989) Zur Abtrennung von butandiol-2,3 aus Fermenter-Brühen mit Hilfe der Umkehrosmose. Chem Ing Tech 61:252–253.  https://doi.org/10.1002/cite.330610316 CrossRefGoogle Scholar
  97. 97.
    Qureshi N, Meagher MM, Hutkins RW (2006) Recovery of 2,3-butanediol by vacuum membrane distillation. Sep Sci Technol 29:1733–1748.  https://doi.org/10.1080/01496399408002168 CrossRefGoogle Scholar
  98. 98.
    Sun LH, Jiang B, Xiu ZL (2009) Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system. Biotechnol Lett 31:371–376.  https://doi.org/10.1007/s10529-008-9874-3 CrossRefPubMedGoogle Scholar
  99. 99.
    Jeon S, Kim DK, Song H, Lee HJ, Park S, Seung D, Chang YK (2014) 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. J Biosci Bioeng 117:464–470.  https://doi.org/10.1016/j.jbiosc.2013.09.007 CrossRefPubMedGoogle Scholar
  100. 100.
    Jeon SJ, Nam HG (2019) Method of preparing diol. Korea Patent 1019751870000Google Scholar
  101. 101.
    Lee JJ, Jeon SJ, Nam HG (2019) Method of decolorization and deordorization of polyhydric alcohol. Korea Patent 1019695300000Google Scholar
  102. 102.
    Joanna P, Bogusław C (2006) New compounds for production of polyurethane foams. Appl Polym Sci 102:5918–5926.  https://doi.org/10.1002/app.25093 CrossRefGoogle Scholar
  103. 103.
    Jiang B, Zhang Z (2010) Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the loess plateau region of china. Molecules 15:9184–9196.  https://doi.org/10.3390/molecules15129184 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026.  https://doi.org/10.1104/pp.103.026583 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932.  https://doi.org/10.1073/pnas.0730845100 CrossRefPubMedGoogle Scholar
  106. 106.
    Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact 19:924–930.  https://doi.org/10.1094/MPMI-19-0924 CrossRefPubMedGoogle Scholar
  107. 107.
    Kong HG, Shin TS, Kim TH, Ryu CM (2018) Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9:90.  https://doi.org/10.3389/fpls.2018.00090 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wu L, Li X, Ma L, Borriss R, Wu Z, Gao X (2018) Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J Exp Bot 69:5625–5635.  https://doi.org/10.1093/jxb/ery326 CrossRefPubMedGoogle Scholar
  109. 109.
    Lai HC, Chang CJ, Yang CH, Hsu YJ, Chen CC, Lin CS, Tsai YH, Huang TT, Ojcius DM, Tsai YH, Lu CC (2012) Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol 92:807–814.  https://doi.org/10.1189/jlb.0112024 CrossRefPubMedGoogle Scholar
  110. 110.
    Hsieh SC, Lu CC, Horng YT, Soo PC, Chang YL, Tsai YH, Lin CS, Lai HC (2007) The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect 9:1402–1409.  https://doi.org/10.1016/j.micinf.2007.07.004 CrossRefPubMedGoogle Scholar
  111. 111.
    Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X (2014) NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111:2126–2131.  https://doi.org/10.1002/bit.25265 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Research and Development Center, GS Caltex CorporationDaejeonSouth Korea
  2. 2.Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research CenterKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations