Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum

  • Wei Liu
  • Xiangcheng ZhuEmail author
  • Jiazhang Lian
  • Lei Huang
  • Zhinan XuEmail author
Metabolic Engineering and Synthetic Biology - Original Paper


Glutathione is a bioactive tripeptide composed of glycine, l-cysteine, and l-glutamate, and has been widely used in pharmaceutical, food, and healthy products. The current metabolic studies of glutathione were mainly focused on the native producing strains with precursor amino acid supplementation. In the present work, Corynebacterium glutamicum, a workhorse for industrial production of a series of amino acids, was engineered to produce glutathione. First, the introduction of glutathione synthetase gene gshF from Streptococcus agalactiae fulfilled the ability of glutathione production in C. glutamicum and revealed that l-cysteine was the limiting factor. Then, considering the inherent capability of l-glutamate synthesis and the availability of external addition of low-cost glycine, l-cysteine biosynthesis was enhanced using a varieties of pathway engineering methods, such as disrupting the degradation pathways of l-cysteine and l-serine, and removing the repressor responsible for sulfur metabolism. Finally, the simultaneously introduction of gshF and enhancement of cysteine formation enabled C. glutamicum strain to produce glutathione greatly. Without external addition of l-cysteine and l-glutamate, 756 mg/L glutathione was produced. This is first time to demonstrate the potential of the glutathione non-producing strain C. glutamicum for glutathione production and provide a novel strategy to construct glutathione-producing strains.


Glutathione gshF Corynebacterium glutamicum l-Cysteine 



This work was financially supported by National Natural Science Foundation of China (Nos. 21576232, 21606205 and 21808199), National Key Technology Research & Development Program of The Ministry of Science & Technology of China (2015BAD15B00), the Natural Science Foundation of Zhejiang Province (No. LY18B060002), and the Fundamental Research Funds for the Central Universities (2018QNA4039).

Supplementary material

10295_2019_2220_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1052 kb)


  1. 1.
    Alfafara C, Miura K, Shimizu H, Shioya S, Suga K-i (1992) Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 37:141–146. CrossRefGoogle Scholar
  2. 2.
    Bachhawat AK, Thakur A, Kaur J, Zulkifli M (2013) Glutathione transporters. BBA-Gen Subjects 1830:3154–3164. CrossRefGoogle Scholar
  3. 3.
    Dhaoui M, Auchere F, Blaiseau P-L, Lesuisse E, Landoulsi A, Camadro J-M, Haguenauer-Tsapis R, Belgareh-Touze N (2011) Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 22:2054–2067. CrossRefGoogle Scholar
  4. 4.
    Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633. CrossRefGoogle Scholar
  5. 5.
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343-U341. CrossRefGoogle Scholar
  6. 6.
    Gopal S, Borovok I, Ofer A, Yanku M, Cohen G, Goebel W, Kreft J, Aharonowitz Y (2005) A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol 187:3839–3847. CrossRefGoogle Scholar
  7. 7.
    Gushima H, Miya T, Murata K, Kimura A (1983) Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem 5:43–52Google Scholar
  8. 8.
    Hamad GM, Taha TH, Alshehri AM, Hafez EE (2005) Enhancement of the glutathione production by mutated yeast strains and its potential as food supplement and preservative. Res J Microbiol 13:28–36. Google Scholar
  9. 9.
    Han G, Hu X, Qin T, Li Y, Wang X (2016) Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-l-methionine. Enzyme Microb Technol 83:14–21. CrossRefGoogle Scholar
  10. 10.
    Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172. CrossRefGoogle Scholar
  11. 11.
    Janowiak BE, Griffith OW (2005) Glutathione synthesis in Streptococcus agalactiae-one protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem 280:11829–11839. CrossRefGoogle Scholar
  12. 12.
    Joo Y-C, Hyeon JE, Han SO (2017) Metabolic design of Corynebacterium glutamicum for production of l-cysteine with consideration of sulfur-supplemented animal feed. J Agric Food Chem 65:4698–4707. CrossRefGoogle Scholar
  13. 13.
    Kiriyama K, Hara KY, Kondo A (2012) Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biotechnol 96:1021–1027. CrossRefGoogle Scholar
  14. 14.
    Kondoh M, Hirasawa T (2019) l-Cysteine production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 103:2609–2619. CrossRefGoogle Scholar
  15. 15.
    Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T (2012) Metabolic engineering and flux analysis of for Corynebacterium glutamicum for l-serine production. Sci China Life Sci 55:283–290. CrossRefGoogle Scholar
  16. 16.
    Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242. CrossRefGoogle Scholar
  17. 17.
    Liu W, Zheng P, Yu F, Yang Q (2015) A two-stage process for succinate production using genetically engineered Corynebacterium acetoacidophilum. Process Biochem 50:1692–1700. CrossRefGoogle Scholar
  18. 18.
    Murata K, Kimura A (1982) Some properties of glutathione biosynthesis-deficient mutants of Escherichia coli B. Microbiol 128:1047–1052. CrossRefGoogle Scholar
  19. 19.
    Murata K, Kimura A (1990) Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnol Adv 8:59–96. CrossRefGoogle Scholar
  20. 20.
    Nakatani T, Ohtsu I, Nonaka G, Wiriyathanawudhiwong N, Morigasaki S, Takagi H (2012) Enhancement of thioredoxin/glutaredoxin-mediated l-cysteine synthesis from S-sulfocysteine increases l-cysteine production in Escherichia coli. Microbial Cell Fact 11:62. CrossRefGoogle Scholar
  21. 21.
    Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60:437–441. CrossRefGoogle Scholar
  22. 22.
    Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144. CrossRefGoogle Scholar
  23. 23.
    Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261. CrossRefGoogle Scholar
  24. 24.
    Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103:51–65. CrossRefGoogle Scholar
  25. 25.
    Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C–S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. J Bacteriol 174:2968. CrossRefGoogle Scholar
  26. 26.
    Fu RY, Chen J, Li Y (2004) Production of glutathione by recombinant Lactococcus lactis. Chin J Bioprocess Eng (China) 2:30–35Google Scholar
  27. 27.
    Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73. CrossRefGoogle Scholar
  28. 28.
    Schmacht M, Lorenz E, Stahl U, Senz M (2017) Medium optimization based on yeasts elemental composition for glutathione production in Saccharomyces cerevisiae. J Biosci Bioeng 123:555–561. CrossRefGoogle Scholar
  29. 29.
    Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L (2007) Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 73:750–755. CrossRefGoogle Scholar
  30. 30.
    Takagi H, Awano N, Kobayashi S, Noji M, Saito K, Nakamori S (1999) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol Lett 179:453–459. Google Scholar
  31. 31.
    Takagi H, Ohtsu I (2017) l-Cysteine metabolism and fermentation in microorganisms. In: Yokota A, Ikeda M (eds) Amino acid fermentation. Springer, Tokyo, pp 129–151. Google Scholar
  32. 32.
    Takumi K, Ziyatdinov MK, Samsonov V, Nonaka G (2017) Fermentative production of cysteine by Pantoea ananatis. J Appl Environ Microbiol 83:e02502–e02516. CrossRefGoogle Scholar
  33. 33.
    Tan Y, Xu D, Li Y, Wang X (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52. CrossRefGoogle Scholar
  34. 34.
    Tang L, Wang W, Zhou W, Cheng K, Yang Y, Liu M, Cheng K, Wang W (2015) Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae. Microb Cell Fact 14:139. CrossRefGoogle Scholar
  35. 35.
    van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545. CrossRefGoogle Scholar
  36. 36.
    Vergauwen B, De Vos D, Van Beeumen JJ (2006) Characterization of the bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem 281:4380–4394. CrossRefGoogle Scholar
  37. 37.
    Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107. CrossRefGoogle Scholar
  38. 38.
    Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 73:48–54. CrossRefGoogle Scholar
  39. 39.
    Wang D, Wang C, Wu H, Li Z, Ye Q (2016) Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol 43:45–53. CrossRefGoogle Scholar
  40. 40.
    Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y (2019) Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl Microbiol Biotechnol 103:1325–1338. CrossRefGoogle Scholar
  41. 41.
    Wiriyathanawudhiwong N, Ohtsu I, Li Z-D, Mori H, Takagi H (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81:903–913. CrossRefGoogle Scholar
  42. 42.
    Yang J, Li W, Wang D, Wu H, Li Z, Ye Q (2016) Characterization of bifunctional l-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis. Appl Microbiol Biotechnol 100:6279–6289. CrossRefGoogle Scholar
  43. 43.
    Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y (2009) Double deletion of dtsR1 and pyc induce efficient l-glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 36:911–921. CrossRefGoogle Scholar
  44. 44.
    Zhang J, Quan C, Wang C, Wu H, Li Z, Ye Q (2016) Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Fact 15:38. CrossRefGoogle Scholar
  45. 45.
    Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z (2015) l-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:1665–1673. CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.Xiangya International Academy of Translational MedicineCentral South UniversityChangshaChina
  3. 3.College of Chemical and Biological Engineering, Institute of Biological EngineeringZhejiang UniversityHangzhouChina
  4. 4.Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations