Advertisement

Genome mining for lasso peptides: past, present, and future

  • Wai Ling Cheung-Lee
  • A. James LinkEmail author
Natural Products - Review
  • 195 Downloads

Abstract

Over the course of roughly a decade, the lasso peptide field has been transformed. Whereas new compounds were discovered infrequently via activity-driven approaches, now, the vast majority of lasso peptide discovery is driven by genome-mining approaches. This paper starts with a historical overview of the first genome-mining approaches for lasso peptide discovery, and then covers new tools that have emerged. Several examples of novel lasso peptides that have been discovered via genome mining are presented as are examples of new enzymes found associated with lasso peptide gene clusters. Finally, this paper concludes with future directions and unsolved challenges in lasso peptide genome mining.

Notes

Acknowledgements

Lasso peptide research in the Link Lab is supported by the NIH (GM107036) and a grant from the Princeton University School of Engineering and Applied Sciences (SEAS) for the Focused Research Team on Precision Antibiotics.

References

  1. 1.
    Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, Borukhov S, Wang MD, Severinov K (2004) Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25. Mol Cell 14:753–762.  https://doi.org/10.1016/j.molcel.2004.05.017 CrossRefGoogle Scholar
  2. 2.
    Agrawal P, Khater S, Gupta M, Sain N, Mohanty D (2017) RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res 45:W80–W88.  https://doi.org/10.1093/nar/gkx408 CrossRefGoogle Scholar
  3. 3.
    Allen CD, Chen MY, Trick AY, Le DT, Ferguson AL, Link AJ (2016) Thermal unthreading of the lasso peptides astexin-2 and astexin-3. ACS Chem Biol 11:3043–3051.  https://doi.org/10.1021/acschembio.6b00588 CrossRefGoogle Scholar
  4. 4.
    Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160CrossRefGoogle Scholar
  5. 5.
    Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach Learn 21:51–80Google Scholar
  6. 6.
    Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212.  https://doi.org/10.1093/nar/gkt449 CrossRefGoogle Scholar
  7. 7.
    Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HGS, Santos E, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41.  https://doi.org/10.1093/nar/gkx319 CrossRefGoogle Scholar
  8. 8.
    Chandra G, Santos-Aberturas J, Frattaruolo L, Vior NM, Lacret R, Pham TH, Eyles TH, Truman AW (2019) Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 5:6.  https://doi.org/10.1093/nar/gkz192 Google Scholar
  9. 9.
    Chekan JR, Koos JD, Zong C, Maksimov MO, Link AJ, Nair SK (2016) Structure of the lasso peptide isopeptidase identifies a topology for processing threaded substrates. J Am Chem Soc 138:16452–16458.  https://doi.org/10.1021/jacs.6b10389 CrossRefGoogle Scholar
  10. 10.
    Cheung-Lee WL, Parry ME, Cartagena AJ, Darst SA, Link AJ (2019) Discovery and structure of the antimicrobial lasso peptide citrocin. J Biol Chem 294:6822–6830CrossRefGoogle Scholar
  11. 11.
    Cheung WL, Pan SJ, Link AJ (2010) Much of the microcin J25 leader peptide is dispensable. J Am Chem Soc 132:2514–2515CrossRefGoogle Scholar
  12. 12.
    Constantine KL, Friedrichs MS, Detlefsen D, Nishio M, Tsunakawa M, Furumai T, Ohkuma H, Oki T, Hill S, Bruccoleri RE, Lin PF, Mueller L (1995) High-resolution solution structure of siamycin-II—novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 5:271–286CrossRefGoogle Scholar
  13. 13.
    Detlefsen DJ, Hill SE, Volk KJ, Klohr SE, Tsunakawa M, Furumai T, Lin PF, Nishio M, Kawano K, Oki T, Lee MS (1995) Siamycins I and II, new Anti-HIV-1 peptides.2. Sequence analysis and structure determination of siamycin I. J Antibiot 48:1515–1517CrossRefGoogle Scholar
  14. 14.
    Elsard SS, Trusch F, Deng H, Raab A, Prokes I, Busarakam K, Asenjo JA, Andrews BA, van West P, Bull AT, Goodfellow M, Yi Y, Ebel R, Jaspars M, Rateb ME (2015) Chaxapeptin, a lasso peptide from extremotolerant streptomyces leeuwenhoekii strain C58 from the hyperarid atacama desert. J Org Chem 80:10252–10260.  https://doi.org/10.1021/acs.joc.5b01878 CrossRefGoogle Scholar
  15. 15.
    Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL (2015) Artificial molecular machines. Chem Rev 115:10081–10206.  https://doi.org/10.1021/acs.chemrev.5b00146 CrossRefGoogle Scholar
  16. 16.
    Feng Z, Ogasawara Y, Nomura S, Dairi T (2018) Biosynthetic gene cluster of a d-tryptophan-containing lasso peptide, MS-271. ChemBioChem 19:2045–2048.  https://doi.org/10.1002/cbic.201800315 CrossRefGoogle Scholar
  17. 17.
    Gavrish E, Sit CS, Cao SG, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K (2014) Lassomycin, a Ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 21:509–518.  https://doi.org/10.1016/j.chembiol.2014.01.014 CrossRefGoogle Scholar
  18. 18.
    Gil-Ramirez G, Leigh DA, Stephens AJ (2015) Catenanes: fifty years of molecular links. Angew Chem-Int Edit 54:6110–6150.  https://doi.org/10.1002/anie.201411619 CrossRefGoogle Scholar
  19. 19.
    Harris PWR, Cook GM, Leung IKH, Brimble MA (2017) An efficient chemical synthesis of lassomycin enabled by an on-resin lactamisation-off-resin methanolysis strategy and preparation of chemical variants. Aust J Chem 70:172–183.  https://doi.org/10.1071/ch16499 CrossRefGoogle Scholar
  20. 20.
    Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48:1909–1919.  https://doi.org/10.1021/acs.accounts.5b00156 CrossRefGoogle Scholar
  21. 21.
    Hegemann JD, Zimmermann M, Zhu SZ, Klug D, Marahiel MA (2013) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers 100:527–542.  https://doi.org/10.1002/bip.22326 CrossRefGoogle Scholar
  22. 22.
    Hegemann JD, Zimmermann M, Zhu SZ, Steuber H, Harms K, Xie XL, Marahiel MA (2014) Xanthomonins I–III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem-Int Edit 53:2230–2234.  https://doi.org/10.1002/anie.201309267 CrossRefGoogle Scholar
  23. 23.
    Inokoshi J, Koyama N, Miyake M, Shimizu Y, Tomoda H (2016) Structure-activity analysis of gram-positive bacterium-producing lasso peptides with anti-mycobacterial activity. Sci Rep 6:9.  https://doi.org/10.1038/srep30375 CrossRefGoogle Scholar
  24. 24.
    Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95:451–460.  https://doi.org/10.1007/s00253-012-3973-8 CrossRefGoogle Scholar
  25. 25.
    Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp K01-B0171, have a lasso structure. J Am Chem Soc 128:7486–7491CrossRefGoogle Scholar
  26. 26.
    Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new beta-lactam antibiotic.1. discovery, taxonomy, isolation and physical-properties. J Antibiot 32:1–12CrossRefGoogle Scholar
  27. 27.
    Katahira R, Yamasaki M, Matsuda Y, Yoshida M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.2. Solution structure of MS-271: characteristic features of the ‘lasso’ structure. Bioorg Med Chem 4:121–129.  https://doi.org/10.1016/0968-0896(95)00176-x CrossRefGoogle Scholar
  28. 28.
    Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S (2018) Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg Med Chem 26:6050–6055.  https://doi.org/10.1016/j.bmc.2018.11.007 CrossRefGoogle Scholar
  29. 29.
    Kaweewan I, Ohnishi-Kameyama M, Kodani S (2017) Isolation of a new antibacterial peptide achromosin from Streptomyces achromogenes subsp achromogenes based on genome mining. J Antibiot 70:208–211.  https://doi.org/10.1038/ja.2016.108 CrossRefGoogle Scholar
  30. 30.
    Knappe TA, Linne U, Zirah S, Rebuffat S, Xie XL, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130:11446–11454.  https://doi.org/10.1021/ja802966g CrossRefGoogle Scholar
  31. 31.
    Kodani S, Hemmi H, Miyake Y, Kaweewan I, Nakagawa H (2018) Heterologous production of a new lasso peptide brevunsin in Sphingomonas subterranea. J Ind Microbiol Biotechnol 45:983–992.  https://doi.org/10.1007/s10295-018-2077-6 CrossRefGoogle Scholar
  32. 32.
    Kodani S, Inoue Y, Suzuki M, Dohra H, Suzuki T, Hemmi H, Ohnishi-Kameyama M (2017) Sphaericin, a lasso peptide from the rare actinomycete Planomonospora sphaerica. Eur J Org Chem 5:1177–1183.  https://doi.org/10.1002/ejoc.201601334 CrossRefGoogle Scholar
  33. 33.
    Koos JD, Link AJ (2019) Heterologous and in vitro reconstitution of fuscanodin, a lasso peptide from Thermobifida fusca. J Am Chem Soc 141:928–935CrossRefGoogle Scholar
  34. 34.
    Kuroha M, Hemmi H, Ohnishi-Kameyama M, Kodani S (2017) Isolation and structure determination of a new lasso peptide subterisin from Sphingomonas subterranea. Tetrahedron Lett 58:3429–3432.  https://doi.org/10.1016/j.tetlet.2017.07.064 CrossRefGoogle Scholar
  35. 35.
    Lear S, Munshi T, Hudson AS, Hatton C, Clardy J, Mosely JA, Bull TJ, Sit CS, Cobb SL (2016) Total chemical synthesis of lassomycin and lassomycin-amide. Org Biomol Chem 14:4534–4541.  https://doi.org/10.1039/c6ob00631k CrossRefGoogle Scholar
  36. 36.
    Li Y, Ducasse R, Zirah S, Blond A, Goulard C, Lescop E, Giraud C, Hartke A, Guittet E, Pernodet J-L, Rebuffat S (2015) Characterization of Sviceucin from Streptomyces provides insight into enzyme exchangeability and disulfide bond formation in lasso peptides. ACS Chem Biol 10:2641–2649.  https://doi.org/10.1021/acschembio.5b00584 CrossRefGoogle Scholar
  37. 37.
    Maksimov MO, Koos JD, Zong C, Lisko B, Link AJ (2015) Elucidating the specificity determinants of the AtxE2 lasso peptide isopeptidase. J Biol Chem 290:30806–30812.  https://doi.org/10.1074/jbc.M115.694083 CrossRefGoogle Scholar
  38. 38.
    Maksimov MO, Link AJ (2013) Discovery and characterization of an isopeptidase that linearizes lasso peptides. J Am Chem Soc 135:12038–12047.  https://doi.org/10.1021/ja4054256 CrossRefGoogle Scholar
  39. 39.
    Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41:333–344.  https://doi.org/10.1007/s10295-013-1357-4 CrossRefGoogle Scholar
  40. 40.
    Maksimov MO, Pan SJ, Link AJ (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006CrossRefGoogle Scholar
  41. 41.
    Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci USA 109:15223–15228CrossRefGoogle Scholar
  42. 42.
    Martin-Gomez H, Linne U, Albericio F, Tulla-Puche J, Hegemann JD (2018) Investigation of the biosynthesis of the lasso peptide chaxapeptin using an E. coli-based production system. J Nat Prod 81:2050–2056.  https://doi.org/10.1021/acs.jnatprod.8b00392 CrossRefGoogle Scholar
  43. 43.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346.  https://doi.org/10.1093/nar/gkr466 CrossRefGoogle Scholar
  44. 44.
    Metelev M, Arseniev A, Bushin LB, Kuznedelov K, Artamonova TO, Kondratenko R, Khodorkovskii M, Seyedsayamdost MR, Severinov K (2017) Acinetodin and Klebsidin, RNA polymerase targeting lasso peptides produced by human isolates of Acinetobacter gyllenbergii and Klebsiella pneumoniae. ACS Chem Biol 12:814–824.  https://doi.org/10.1021/acschembio.6b01154 CrossRefGoogle Scholar
  45. 45.
    Mevaere J, Goulard C, Schneider O, Sekurova ON, Ma HY, Zirah S, Afonso C, Rebuffat S, Zotchev SB, Li YY (2018) An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts. Sci Rep.  https://doi.org/10.1038/s41598-018-26620-0 Google Scholar
  46. 46.
    Pan SJ, Cheung WL, Link AJ (2010) Engineered gene clusters for the production of the antimicrobial peptide microcin J25. Protein Expr Purif 71:200–206.  https://doi.org/10.1016/j.pep.2009.12.010 CrossRefGoogle Scholar
  47. 47.
    Pan SJ, Rajniak J, Maksimov MO, Link AJ (2012) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun 48:1880–1882CrossRefGoogle Scholar
  48. 48.
    Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, Severinov K (2008) Systematic structure-activity analysis of microcin J25. J Biol Chem 283:25589–25595.  https://doi.org/10.1074/jbc.M803995200 CrossRefGoogle Scholar
  49. 49.
    Rebuffat S, Blond A, Destoumieux-Garzon D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives. Curr Protein Pept Sci 5:383–391CrossRefGoogle Scholar
  50. 50.
    Rosengren KJ, Blond A, Afonso C, Tabet JC, Rebuffat S, Craik DJ (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links. Biochemistry 43:4696–4702.  https://doi.org/10.1021/bi0361261 CrossRefGoogle Scholar
  51. 51.
    Salomon RA, Farias RN (1992) Microcin-25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428–7435CrossRefGoogle Scholar
  52. 52.
    Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65:1380–1394.  https://doi.org/10.1111/j.1365-2958.2007.05874.x CrossRefGoogle Scholar
  53. 53.
    Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li HX, Webster ALH, Wyatt MA, Magarvey NA (2015) Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res 43:9645–9662.  https://doi.org/10.1093/nar/gkv1012 Google Scholar
  54. 54.
    Skinnider MA, Johnston CW, Edgar RE, Dejong CA, Merwin NJ, Rees PN, Magarvey NA (2016) Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc Natl Acad Sci USA 113:E6343–E6351.  https://doi.org/10.1073/pnas.1609014113 CrossRefGoogle Scholar
  55. 55.
    Solbiati JO, Ciaccio M, Farias RN, Gonzalez-Pastor JE, Moreno F, Salomon RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181:2659–2662Google Scholar
  56. 56.
    Son S, Jang M, Lee B, Hong YS, Ko SK, Jang JH, Ahn JS (2018) Ulleungdin, a lasso peptide with cancer cell migration inhibitory activity discovered by the genome mining approach. J Nat Prod 81:2205–2211.  https://doi.org/10.1021/acs.jnatprod.8b00449 CrossRefGoogle Scholar
  57. 57.
    Su Y, Han M, Meng XB, Feng Y, Luo SZ, Yu CY, Zheng GJ, Zhu SZ (2019) Discovery and characterization of a novel C-terminal peptide carboxyl methyltransferase in a lassomycin-like lasso peptide biosynthetic pathway. Appl Microbiol Biotechnol 103:2649–2664.  https://doi.org/10.1007/s00253-019-09645-x CrossRefGoogle Scholar
  58. 58.
    Sugai S, Ohnishi-Kameyama M, Kodani S (2017) Isolation and identification of a new lasso peptide cattlecin from Streptomyces cattleya based on genome mining. Appl Biol Chem 60:163–167.  https://doi.org/10.1007/s13765-017-0268-x CrossRefGoogle Scholar
  59. 59.
    Takasaka N, Kaweewan I, Ohnishi-Kameyama M, Kodani S (2017) Isolation of a new antibacterial peptide actinokineosin from Actinokineospora spheciospongiae based on genome mining. Lett Appl Microbiol 64:150–157.  https://doi.org/10.1111/lam.12693 CrossRefGoogle Scholar
  60. 60.
    Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA (2017) A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol 13:470–478.  https://doi.org/10.1038/nchembio.2319 CrossRefGoogle Scholar
  61. 61.
    Tsunakawa M, Hu SL, Hoshino Y, Detlefson DJ, Hill SE, Furumai T, White RJ, Nishio M, Kawano K, Yamamoto S, Fukagawa Y, Oki T (1995) Siamycin-I and Siamycin-II, new anti-HIV peptides.1. Fermentation, isolation, biological-activity and initial characterization. J Antibiot 48:433–434CrossRefGoogle Scholar
  62. 62.
    van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP (2013) BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 41:W448–W453.  https://doi.org/10.1093/nar/gkt391 CrossRefGoogle Scholar
  63. 63.
    van Heel AJ, de Jong A, Song CX, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281.  https://doi.org/10.1093/nar/gky383 CrossRefGoogle Scholar
  64. 64.
    Vasilyeva LV, Omelchenko MV, Berestovskaya YY, Lysenko AM, Abraham WR, Dedysh SN, Zavarzin GA (2006) Asticcacaulis benevestitus sp nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int J Syst Evol Microbiol 56:2083–2088.  https://doi.org/10.1099/ijs.0.64122-0 CrossRefGoogle Scholar
  65. 65.
    Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243.  https://doi.org/10.1093/nar/gkv437 CrossRefGoogle Scholar
  66. 66.
    Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK (1991) Anantin—a peptide antagonst of the atrial-natriuretic-factor (ANF) 1. Producing organism, fermentation, isolation and biological activity. J Antibiot 44:164–171CrossRefGoogle Scholar
  67. 67.
    Wyss DF, Lahm HW, Manneberg M, Labhardt AM (1991) Anantin—a peptide antagonist of the atrial-natriuretic factor (ANF) 2. determination of the primary sequence by NMR on the basis of proton assignments. J Antibiot 44:172–180CrossRefGoogle Scholar
  68. 68.
    Yang WL, Li YJ, Liu HBA, Chi LF, Li YL (2012) Design and assembly of rotaxane-based molecular switches and machines. Small 8:504–516.  https://doi.org/10.1002/smll.201101738 CrossRefGoogle Scholar
  69. 69.
    Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farias RN, Salomon R, Severinov K (2002) Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J Biol Chem 277:50867–50875CrossRefGoogle Scholar
  70. 70.
    Zhu SZ, Hegemann JD, Fage CD, Zimmermann M, Xie XL, Linne U, Marahiel MA (2016) Insights into the unique phosphorylation of the lasso peptide paeninodin. J Biol Chem 291:13662–13678.  https://doi.org/10.1074/jbc.M116.722108 CrossRefGoogle Scholar
  71. 71.
    Zimmermann M, Hegemann Julian D, Xie X, Marahiel Mohamed A (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20:558–569.  https://doi.org/10.1016/j.chembiol.2013.03.013 CrossRefGoogle Scholar
  72. 72.
    Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2014) Characterization of caulonodin lasso peptides revealed unprecedented N-terminal residues and a precursor motif essential for peptide maturation. Chem Sci 5:4032–4043.  https://doi.org/10.1039/c4sc01428f CrossRefGoogle Scholar
  73. 73.
    Zong C, Wu MJ, Qin JZ, Link AJ (2017) Lasso peptide benenodin-1 is a thermally actuated [1]rotaxane switch. J Am Chem Soc 139:10403–10409CrossRefGoogle Scholar
  74. 74.
    Zong CH, Cheung-Lee WL, Elashal HE, Raj M, Link AJ (2018) Albusnodin: an acetylated lasso peptide from Streptomyces albus. Chem Commun 54:1339–1342.  https://doi.org/10.1039/c7cc08620b CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations