Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain

  • Hang Soo Cho
  • Jin Chul Jo
  • Chang-Hun Shin
  • Namil Lee
  • Joon-Sun Choi
  • Byung-Kwan Cho
  • Jung-Hye Roe
  • Chan-Wha Kim
  • Ho Jeong KwonEmail author
  • Yeo Joon YoonEmail author
Genetics and Molecular Biology of Industrial Organisms -Original Paper


Genomic analysis of the clavulanic acid (CA)-high-producing Streptomyces clavuligerus strains, OL13 and OR, developed through random mutagenesis revealed a frameshift mutation in the cas1 gene-encoding clavaminate synthase 1. Overexpression of the intact cas1 in S. clavuligerus OR enhanced the CA titer by approximately 25%, producing ~ 4.95 g/L of CA, over the OR strain in the flask culture. Moreover, overexpression of the pathway-specific positive regulatory genes, ccaR and claR, in the OR strain improved CA yield by approximately 43% (~ 5.66 g/L) in the flask. However, co-expression of the intact cas1 with ccaR-claR did not further improve CA production. In the 7 L fermenter culture, maximum CA production by the OR strain expressing the wild-type cas1 and ccaR-claR reached approximately 5.52 g/L and 6.01 g/L, respectively, demonstrating that reverse engineering or simple rational metabolic engineering is an efficient method for further improvement of industrial strains.


Clavulanic acid Streptomyces clavuligerus Reverse engineering Metabolic engineering 



This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) (2015K1A1A2028365, 2019R1A2B5B03069338), Bio and Medical Technology Development Program (2018M3A9F3079662, 2018M3A9F3079664) through NRF funded by MSIT, and the Intelligent Synthetic Biology Center of the Global Frontier Project funded by MSIT (20110031961).

Supplementary material

10295_2019_2196_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)


  1. 1.
    Arulanantham H, Kershaw NJ, Hewitson KS, Hughes CE, Thirkettle JE, Schofield CJ (2006) ORF17 from the clavulanic acid biosynthesis gene cluster catalyzes the ATP-dependent formation of N-glycyl-clavaminic acid. J Biol Chem 281:279–287CrossRefGoogle Scholar
  2. 2.
    Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49CrossRefGoogle Scholar
  3. 3.
    Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159(6):1300–1311CrossRefGoogle Scholar
  4. 4.
    Gao W, Wu Z, Sun J, Ni X, Xia H (2017) Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering. PLoS One 12(7):e0181971CrossRefGoogle Scholar
  5. 5.
    Geddes AM, Klugman KP, Rolinson GN (2007) Introduction: historical perspective and development of amoxicillin/clavulanate. Int J Antimicrob Agents 30:109–112CrossRefGoogle Scholar
  6. 6.
    Gravius B, Benzmalinovic T, Hranueli D, Cullum J (1993) Genetic instability and strain degeneration in Streptomyces rimosus. Appl Environ Microbiol 59(7):2220–2228Google Scholar
  7. 7.
    Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of β-lactam biosynthesis. Nat Prod Rep 30(1):21–107CrossRefGoogle Scholar
  8. 8.
    Jensen SE (2012) Biosynthesis of clavam metabolites. J Ind Microbiol Biotechnol 39(10):1407–1419CrossRefGoogle Scholar
  9. 9.
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hoopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, NorwichGoogle Scholar
  10. 10.
    Kim SJ, Kim JO, Shin CH, Park HW, Kim CW (2009) An approach to strain improvement and enhanced production of clavulanic acid in Streptomyces clavuligerus. Biosci Biotechnol Biochem 73(1):160–164CrossRefGoogle Scholar
  11. 11.
    Kizildoğan AK, Jaccard GV, Mutlu A, Sertdemir I, Özcengiz G (2017) Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turk J Biol 1(2):342–353CrossRefGoogle Scholar
  12. 12.
    Liras P, Gomez-Escribano JP, Santamarta I (2008) Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35(7):667CrossRefGoogle Scholar
  13. 13.
    Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6(3):186–196CrossRefGoogle Scholar
  14. 14.
    MacKenzie AK, Kershaw NJ, Hernandez H, Robinson CV, Schofield CJ, Andersson I (2007) Clavulanic acid dehydrogenase: structural and biochemical analysis of the final step in the biosynthesis of the β-lactamase inhibitor clavulanic acid. Biochemistry 46(6):1523–1533CrossRefGoogle Scholar
  15. 15.
    Medema MH, Alam MT, Heijne WH, van den Berg MA, Müller U, Trefzer A, Bovenberg RAL, Breitling R, Takano E (2011) Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb Biotechnol 4(2):300–305CrossRefGoogle Scholar
  16. 16.
    Miao V, Coëffet-Le Gal MF, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH (2006) Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem Biol 13(3):269–276CrossRefGoogle Scholar
  17. 17.
    Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133:976–985CrossRefGoogle Scholar
  18. 18.
    Mosher RH, Paradkar AS, Anders C, Barton B, Jensen SE (1999) Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus. Antimicrob Agents Chemother 43:1215–1224CrossRefGoogle Scholar
  19. 19.
    Neves AA, Pereira DA, Vieira LM, Menzes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52CrossRefGoogle Scholar
  20. 20.
    Ni X, Sun Z, Gu Y, Cui H, Xia H (2016) Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microb Cell Fact 15(1):1CrossRefGoogle Scholar
  21. 21.
    Paradkar AS, Aidoo KA, Jensen SE (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 27:831–843CrossRefGoogle Scholar
  22. 22.
    Paradkar AS, Jensen SE (1995) Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J Biotechnol 177:1307–1314Google Scholar
  23. 23.
    Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 179:2053–2059CrossRefGoogle Scholar
  24. 24.
    Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211:311–321CrossRefGoogle Scholar
  25. 25.
    Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175CrossRefGoogle Scholar
  26. 26.
    Qin R, Zhong C, Zong G, Fu J, Pang X, Cao G (2017) Improvement of clavulanic acid production in Streptomyces clavuligerus F613-1 by using a claR-neo reporter strategy. Electron J Biotechnol 28:41–46CrossRefGoogle Scholar
  27. 27.
    Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6(4):300–312CrossRefGoogle Scholar
  28. 28.
    Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb Technol 6(1):3–10CrossRefGoogle Scholar
  29. 29.
    Schmitt-John T, Engels JE (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498CrossRefGoogle Scholar
  30. 30.
    Song JY, Jeong H, Yu DS, Fischbach MA, Park HS, Kim JJ, Seo JS, Jensen SE, Oh TK, Lee KJ, Kim JF (2010) Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J Bacteriol 192(23):6317–6318CrossRefGoogle Scholar
  31. 31.
    Tahlan K, Jensen SE (2013) Origins of the β-lactam rings in natural products. J Antibiot 66(7):401CrossRefGoogle Scholar
  32. 32.
    Tarbuck LA, Ng MH, Leigh JR, Tampion J (1985) Estimation of the progress of Streptomyces clavuligerus fermentations for improved on-line control of antibiotic production. Model Control Biotechnol Process 18:191–198Google Scholar
  33. 33.
    Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G (2017) Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2(1):39–48CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
  2. 2.Institute of Nano-Bio TechnologyEwha Womans UniversitySeoulRepublic of Korea
  3. 3.Department of BiotechnologyKorea UniversitySeoulRepublic of Korea
  4. 4.Fermentation Technology TeamResearch Institute of CKD BioAnsanRepublic of Korea
  5. 5.Department of Biological Sciences and KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  6. 6.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  7. 7.Intelligenet Synthetic Biology CenterDaejeonRepublic of Korea
  8. 8.Department of Chemistry and NanoscienceEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations