Skip to main content
Log in

Isolation of a novel platform bacterium for lignin valorization and its application in glucose-free cis,cis-muconate production

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial production of cis,cis-muconate (ccMA) from phenolic compounds obtained by chemical depolymerization of lignin is a promising approach to valorize lignin. Because microbial production requires a large amount of carbon and energy source, it is desirable to establish a ccMA-producing strain that utilizes lignin-derived phenols instead of general sources like glucose. We isolated Pseudomonas sp. strain NGC7 that grows well on various phenolic compounds derived from p-hydroxyphenyl, guaiacyl, and syringyl units of lignin. An NGC7 mutant of protocatechuate (PCA) 3,4-dioxygenase and ccMA cycloisomerase genes (NGC703) lost the ability to grow on vanillate and p-hydroxybenzoate but grew normally on syringate. Introduction of a plasmid carrying genes encoding PCA decarboxylase, flavin prenyltransferase, vanillate O-demethylase, and catechol 1,2-dioxygenase into NGC703 enabled production of 3.2 g/L ccMA from vanillate with a yield of 75% while growing on syringate. This strain also produced ccMA from birch lignin-derived phenols. All these results indicate the utility of NGC7 in glucose-free ccMA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M (2005) A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol 187:2030–2037. https://doi.org/10.1128/JB.187.6.2030-2037.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C (2018) Enabling the valorization of guaiacol-based lignin: integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp. ATCC 39116. Metab Eng 45:200–210. https://doi.org/10.1016/j.ymben.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis,cis-muconic acid from lignin. Microb Cell Fact 17:115. https://doi.org/10.1186/s12934-018-0963-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53. https://doi.org/10.1016/j.copbio.2016.02.030

    Article  CAS  PubMed  Google Scholar 

  5. Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38:35–51. https://doi.org/10.1006/plas.1997.1294

    Article  CAS  PubMed  Google Scholar 

  6. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  7. Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cecil JH, Garcia DC, Giannone RJ, Michener JK (2018) Rapid, parallel identification of catabolism pathways of lignin-derived aromatic compounds in Novosphingobium aromaticivorans. Appl Environ Microbiol 84:e01185-18. https://doi.org/10.1128/AEM.01185-18

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crawford RL (1975) Novel pathway for degradation of protocatechuic acid in Bacillus species. J Bacteriol 121:531–536

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, da Costa Sousa L, Balan V, Dumesic JA, Hegg EL, Dale BE, Ralph J, Coon JJ, Stahl SS (2018) Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources. ACS Sustain Chem Eng 6:3367–3374. https://doi.org/10.1021/acssuschemeng.7b03541

    Article  CAS  Google Scholar 

  11. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  12. Jiménez JI, Miñambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841. https://doi.org/10.1046/j.1462-2920.2002.00370.x

    Article  PubMed  Google Scholar 

  13. Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT (2017) Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun 5:19–25. https://doi.org/10.1016/j.meteno.2017.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson CW, Salvachua D, Khanna P, Smith H, Peterson DJ, Beckham GT (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun 3:111–119. https://doi.org/10.1016/j.meteno.2016.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. https://doi.org/10.1093/nar/gkn201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamimura N, Masai E (2014) The protocatechuate 4,5-cleavage pathway: overview and new findings. In: Nojiri H, Tsuda M, Fukuda M, Kamagata Y (eds) Biodegradative bacteria: how bacteria degrade, survive, adapt, and evolve. Springer, Tokyo, pp 207–226. https://doi.org/10.1007/978-4-431-54520-0_10

    Chapter  Google Scholar 

  17. Kasai D, Fujinami T, Abe T, Mase K, Katayama Y, Fukuda M, Masai E (2009) Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol 191:6758–6768. https://doi.org/10.1128/JB.00840-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasai D, Kamimura N, Tani K, Umeda S, Abe T, Fukuda M, Masai E (2012) Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6. FEMS Microbiol Lett 332:68–75. https://doi.org/10.1111/j.1574-6968.2012.02576.x

    Article  CAS  PubMed  Google Scholar 

  19. Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M (2005) Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. J Bacteriol 187:5067–5074. https://doi.org/10.1128/JB.187.15.5067-5074.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maruyama K, Ariga N, Tsuda M, Deguchi K (1978) Purification and properties of α-hydroxy-γ-carboxymuconic ε-semialdehyde dehydrogenase. J Biochem 83:1125–1134

    Article  CAS  PubMed  Google Scholar 

  21. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  PubMed  Google Scholar 

  22. Masai E, Sasaki M, Minakawa Y, Abe T, Sonoki T, Miyauchi K, Katayama Y, Fukuda M (2004) A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J Bacteriol 186:2757–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Masai E, Shinohara S, Hara H, Nishikawa S, Katayama Y, Fukuda M (1999) Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181:55–62

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nogales J, Canales A, Jimenez-Barbero J, Garcia JL, Diaz E (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem 280:35382–35390

    Article  CAS  PubMed  Google Scholar 

  25. Nozaki M, Kagamiyama H, Hayaishi O (1963) Metapyrocatechase I. Purification, crystallization and some properties. Biochemische Zeitschrift 338:582–590

    CAS  PubMed  Google Scholar 

  26. Payer SE, Marshall SA, Barland N, Sheng X, Reiter T, Dordic A, Steinkellner G, Wuensch C, Kaltwasser S, Fisher K, Rigby SEJ, Macheroux P, Vonck J, Gruber K, Faber K, Himo F, Leys D, Pavkov-Keller T, Glueck SM (2017) Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase. Angew Chem Int Ed Engl 56:13893–13897. https://doi.org/10.1002/anie.201708091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  28. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4

    Article  CAS  Google Scholar 

  29. Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101:5059–5070. https://doi.org/10.1007/s00253-017-8211-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rice P, Longden I, Bleasby A (2000) EMBOSS: the european molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez A, Salvachúa D, Katahira R, Black BA, Cleveland NS, Reed M, Smith H, Baidoo EEK, Keasling JD, Simmons BA, Beckham GT, Gladden JM (2017) Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustain Chem Eng 5:8171–8180. https://doi.org/10.1021/acssuschemeng.7b01818

    Article  CAS  Google Scholar 

  32. Salvachúa D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, Knapp A, Beckham GT (2018) Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem 20:5007–5019. https://doi.org/10.1039/c8gc02519c

    Article  CAS  Google Scholar 

  33. Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley, New York

    Google Scholar 

  34. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  CAS  PubMed  Google Scholar 

  35. Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67:1059–1070. https://doi.org/10.5650/jos.ess18075

    Article  CAS  PubMed  Google Scholar 

  36. Sonoki T, Morooka M, Sakamoto K, Otsuka Y, Nakamura M, Jellison J, Goodell B (2014) Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J Biotechnol 192 Pt A:71–77. https://doi.org/10.1016/j.jbiotec.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  37. Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, Suzuki S, Kamimura N, Masai E (2017) Glucose-free cis, cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustain Chem Eng 6:1256–1264. https://doi.org/10.1021/acssuschemeng.7b03597

    Article  CAS  Google Scholar 

  38. Sugimoto K, Senda M, Kasai D, Fukuda M, Masai E, Senda T (2014) Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6. PLoS One 9:e92249. https://doi.org/10.1371/journal.pone.0092249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. https://doi.org/10.1104/pp.110.155119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628. https://doi.org/10.1039/c4ee03230f

    Article  CAS  Google Scholar 

  41. White MD, Payne KA, Fisher K, Marshall SA, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Rigby SE, Scrutton NS, Hay S, Leys D (2015) UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522:502–506. https://doi.org/10.1038/nature14559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5:195–217. https://doi.org/10.1007/BF00696460

    Article  CAS  PubMed  Google Scholar 

  43. Wu W, Dutta T, Varman AM, Eudes A, Manalansan B, Loque D, Singh S (2017) Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci Rep 7:8420. https://doi.org/10.1038/s41598-017-07895-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Z, Lei P, Zhai R, Wen Z, Jin M (2019) Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1376-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Advanced Low Carbon Technology Development (ALCA) program, Japan Science and Technology Agency (JPMJAL1506) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Masai.

Ethics declarations

Conflict of interest

N.K, T.S, and E.M. are inventors on a patent related to this work. The authors declare that they have no other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinoda, E., Takahashi, K., Abe, N. et al. Isolation of a novel platform bacterium for lignin valorization and its application in glucose-free cis,cis-muconate production. J Ind Microbiol Biotechnol 46, 1071–1080 (2019). https://doi.org/10.1007/s10295-019-02190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02190-6

Keywords

Navigation