Advertisement

Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis

  • Irina Charlot Peña-Moreno
  • Denise Castro Parente
  • Jackeline Maria da Silva
  • Allyson Andrade Mendonça
  • Lino Angel Valcarcel Rojas
  • Marcos Antonio de Morais Junior
  • Will de Barros PitaEmail author
Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • 77 Downloads

Abstract

In the past few years, the yeast Dekkera bruxellensis has gained much of attention among the so-called non-conventional yeasts for its potential in the biotechnological scenario, especially in fermentative processes. This yeast has been regarded as an important competitor to Saccharomyces cerevisiae in bioethanol production plants in Brazil and several studies have reported its capacity to produce ethanol. However, our current knowledge concerning D. bruxellensis is restricted to its aerobic metabolism, most likely because wine and beer strains cannot grow in full anaerobiosis. Hence, the present work aimed to fulfil a gap regarding the lack of information on the physiology of Dekkera bruxellensis growing in the complete absence of oxygen and the relationship with assimilation of nitrate as nitrogen source. The ethanol strain GDB 248 was fully capable of growing anaerobically and produces ethanol at the same level of S. cerevisiae. The presence of nitrate in the medium increased this capacity. Moreover, nitrate is consumed faster than ammonium and this increased rate coincided with a higher speed of glucose consumption. The profile of gene expression helped us to figure out that even in anaerobiosis, the presence of nitrate drives the yeast cells to an oxidative metabolism that ultimately incremented both biomass and ethanol production. These results finally provide the clues to explain most of the success of this yeast in industrial processes of ethanol production.

Keywords

Ethanol Acetate metabolism Anaerobic growth Energetic demand Nitrogen catabolite repression 

Notes

Funding

This work was sponsored by grants of the National Council of Science and Technology (CNPq no. 446927/2014-7 and 474847/2013-6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abbott DA, Hynes SH, Ingledew WM (2005) Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations. Appl Microbiol Biotechnol 6:641–647.  https://doi.org/10.1007/s00253-004-1769-1 CrossRefGoogle Scholar
  2. 2.
    Bassi AP, da Silva JC, Reis VR, Ceccato-Antonini SR (2013) Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae. World J Microbiol Biotechnol 29:166–176.  https://doi.org/10.1007/s11274-013-1329-x CrossRefGoogle Scholar
  3. 3.
    Borneman AR, Zeppel R, Chambers PJ, Curtin CD (2014) Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variation in ploidy and nutrient utilization potential amongst wine isolates. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1004161 Google Scholar
  4. 4.
    Blomqvist J, Eberhard T, Schnurer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. App Microbiol Biotechnol 87:1487–1497.  https://doi.org/10.1007/s00253-010-2619-y CrossRefGoogle Scholar
  5. 5.
    Bustin SA, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefGoogle Scholar
  6. 6.
    Cajueiro DBB, Parente DC, Leite FCB, de Morais MA Jr, de Barros Pita W (2017) Glutamine: a major player in nitrogen catabolite repression in the yeast Dekkera bruxellensis. Antonie Van Leeuwenhoek 110:1157–1168.  https://doi.org/10.1007/s10482-017-0888-5 CrossRefGoogle Scholar
  7. 7.
    Capusoni C, Arioli S, Zambelli P, Moktaduzzaman M, Mora D, Compagno C (2016) Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis. App and Environmental Microbiol 82:4673–4681.  https://doi.org/10.1128/AEM.00515-16 CrossRefGoogle Scholar
  8. 8.
    Ciani M, Maccarelli F, Fatichenti F (2003) Growth and fermentation behaviour of Brettanomyces/Dekkera under different conditions of aerobiosis. World J Microbiol Biotechnol 10:419–422.  https://doi.org/10.1023/A:1023950803858 CrossRefGoogle Scholar
  9. 9.
    Crauwels S, Van Assche A, de Jonge R, Borneman AR, Verreth C, Troels P, De Samblanx G, Marchal K, Van de Peer Y, Willems KA, Verstrepen KJ, Curtin CD, Lievens B (2015) Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. Appl Microbiol Biotechnol 91:23–34.  https://doi.org/10.1007/s00253-015-6769-9 Google Scholar
  10. 10.
    Curtin CD, Pretorius IS (2014) Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis. FEMS Yeast Res 14:997–1005.  https://doi.org/10.1111/1567-1364.12198 Google Scholar
  11. 11.
    da Silva TC, Leite FC, de Morais MA Jr (2016) Distribution of Dekkera bruxellensis in a sugarcane-based fuel ethanol fermentation plant. Lett Appl Microbiol.  https://doi.org/10.1111/lam.12558 Google Scholar
  12. 12.
    de Barros Pita W, Leite FCB, de Souza Liberal AT, Simões DA, de Morais MA Jr (2011) The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. Antonie Van Leeuwenhoek 100:99–107.  https://doi.org/10.1007/s10482-011-9568-z CrossRefGoogle Scholar
  13. 13.
    de Barros Pita W, Leite FCB, de Souza Liberal AT, Pereira LF, Falsarella- Carazzolle M, Amarante-Pereira G, de Morais MA Jr (2012) A new set of reference genes for RT–qPCR assays in the yeast Dekkera bruxellensis. Can J Microbiol 58:1362–1367.  https://doi.org/10.1139/cjm-2012-0457 CrossRefGoogle Scholar
  14. 14.
    de Barros Pita W, Castro Silva D, Simões-Ardaillon D, Volkmar P, de Morais MA Jr (2013) Physiology and gene expression profiles of Dekkera bruxellensis in response to carbon and nitrogen availability. Antonie Van Leeuwenhoek 104:855–868.  https://doi.org/10.1007/s10482-013-9998-x CrossRefGoogle Scholar
  15. 15.
    de Barros Pita W, Tiukova I, Leite FCB, Passoth V, Simões DA, de Morais MA Jr (2013) The influence of nitrate on the physiology of the yeast Dekkera bruxellensis grown under oxygen limitation. Yeast Res 30:111–117.  https://doi.org/10.1002/yea.2945 CrossRefGoogle Scholar
  16. 16.
    De Souza Liberal A, Basilio A, Do Monte Resende A, Brasileiro B, Da Silva Filho E, de Morais JO, Simoes DA, de Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J App Microbiol 102:538–547.  https://doi.org/10.1111/j.1365-2672.2006.03082.x Google Scholar
  17. 17.
    Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C (2013) Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products. J Indus Micobiol Biotechnol 40:297–303.  https://doi.org/10.1007/s10295-012-1229-3 CrossRefGoogle Scholar
  18. 18.
    Leite FC, Basso TO, De Barros Pita W, Gombert AK, Simoes DA, de Morais MA Jr (2013) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 13:34–43.  https://doi.org/10.1111/j.1567-1364.2012.12007.x CrossRefGoogle Scholar
  19. 19.
    Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 15:1–18.  https://doi.org/10.1016/S0378-1119(02)00558-9 CrossRefGoogle Scholar
  20. 20.
    Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(1):W566–W570.  https://doi.org/10.1093/nar/gkv468 CrossRefGoogle Scholar
  21. 21.
    Neto AG, Pestana-Calsa MC, de Morais MA, Calsa T Jr (2014) Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. J Proteom.  https://doi.org/10.1016/j.jprot.2014.03.014 Google Scholar
  22. 22.
    Parente DC, Cajueiro DBB, Moreno ICP, Leite FCB, de Barros Pita W, de Morais MA Jr (2017) On the catabolism of amino acids in the yeast Dekkera bruxellensis and the implications for industrial fermentation processes. Yeast.  https://doi.org/10.1002/yea.3290 Google Scholar
  23. 23.
    Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356.  https://doi.org/10.1128/AEM.00437-07 CrossRefGoogle Scholar
  24. 24.
    Pereira LF, Bassi AP, Avansini SH, Neto AG, Brasileiro BT, Ceccato-Antonini SR, de Morais MA Jr (2012) The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 101:529–539.  https://doi.org/10.1007/s10482-011-9662-2 CrossRefGoogle Scholar
  25. 25.
    Pereira LF, Lucatti E, Basso LC, de Morais MA Jr (2014) The Fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Antonie Van Leeuwenhoek 105:481–489.  https://doi.org/10.1007/s10482-013-0100-5 CrossRefGoogle Scholar
  26. 26.
    Piskur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev IV, Gabaldón T, Phister T (2012) The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157:202–209.  https://doi.org/10.1016/j.ijfoodmicro.2012.05.008 CrossRefGoogle Scholar
  27. 27.
    Phuong Thuy T, Boyd CE (2012) Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. J World Aquac Soc 43:885–889.  https://doi.org/10.1111/j.1749-7345.2012.00616.x CrossRefGoogle Scholar
  28. 28.
    Pronk JT, Yde Steensma H, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633.  https://doi.org/10.1002/(SICI)1097-0061(199612)12:16<1607:AID-YEA70>3.0.CO;2-4 CrossRefGoogle Scholar
  29. 29.
    Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res.  https://doi.org/10.1093/femsyr/fov053 Google Scholar
  30. 30.
    Reis AL, de Fátima-Rodrigues de Souza R, Baptista-Torres RR, Leite FC, Paiva PM, Vidal EE, de Morais MA Jr (2014) Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain. Springerplus 45:85.  https://doi.org/10.1186/2193-1801-3-38 Google Scholar
  31. 31.
    Reis AL, Damilano ED, Menezes RSC, de Morais MA Jr (2016) Second-generation ethanol from sugarcane and sweet sorghum bagasses using the yeast Dekkera bruxellensis. Ind Crops Prod 92:255–262.  https://doi.org/10.1016/j.indcrop.2016.08.007 CrossRefGoogle Scholar
  32. 32.
    Rozpedowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302.  https://doi.org/10.1038/ncomms1305 CrossRefGoogle Scholar
  33. 33.
    Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ (2015) Brettanomyces yeasts—from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 45:85.  https://doi.org/10.1016/j.ijfoodmicro.2015.04.005 Google Scholar
  34. 34.
    Teles GH, Da Silva JM, Mendonça AA, de Morais Jr MA, De Barros Pita W (2018) First aspects on acetate metabolism in the yeast Dekkera 1 bruxellensis: a 2 few keys for improving ethanol fermentation. Yeast.  https://doi.org/10.1002/yea.3348 Google Scholar
  35. 35.
    Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS One.  https://doi.org/10.1371/journal.pone.0058455 Google Scholar
  36. 36.
    Vandesompele J, de Preter K, Pattyn F, Poppe B, Van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11.  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  37. 37.
    Wijsman MR, van Dijken JP, van Kleeff BH, Scheffers WA (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (custers effect). Antonie van Leeuwenhoek 50:183–192.  https://doi.org/10.1007/BF00400180 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Irina Charlot Peña-Moreno
    • 1
  • Denise Castro Parente
    • 1
  • Jackeline Maria da Silva
    • 1
  • Allyson Andrade Mendonça
    • 1
  • Lino Angel Valcarcel Rojas
    • 3
  • Marcos Antonio de Morais Junior
    • 1
  • Will de Barros Pita
    • 2
    • 4
    Email author
  1. 1.Department of GeneticsFederal University of PernambucoRecifeBrazil
  2. 2.Department of AntibioticsFederal University of PernambucoRecifeBrazil
  3. 3.Department of Nuclear EnergyFederal University of PernambucoRecifeBrazil
  4. 4.Departamento de Antibióticos, Universidade Federal de PernambucoRecifeBrazil

Personalised recommendations