Advertisement

CylA is a sequence-specific protease involved in toxin biosynthesis

  • Weixin Tang
  • Silvia C. Bobeica
  • Li Wang
  • Wilfred A. van der DonkEmail author
Natural Products - Original Paper
  • 290 Downloads

Abstract

CylA is a subtilisin-like protein belonging to a recently expanded serine protease family related to class II lanthipeptide biosynthesis. As a leader peptidase, CylA is responsible for maturation of the enterococcal cytolysin, a lantibiotic important for Enterococcus faecalis virulence. In vitro reconstitution of CylA reveals that it accepts both linear and modified cytolysin peptides with a preference for cyclized peptides. Further characterization indicates that CylA activates itself by removing its N-terminal 95 amino acids. CylA achieves sequence-specific traceless cleavage of non-cognate peptides even if they are post-translationally modified, which makes the peptidase a powerful tool for mining novel lanthipeptides by providing a general strategy for leader peptide removal. Knowledge about the substrate specificity of CylA may also facilitate the development of protease inhibitors targeting cytolysin biosynthesis as a potential therapeutic approach for enterococcal infections.

Keywords

Natural products RiPPs Lanthipeptides Lantibiotics Leader peptide Peptidase 

Notes

Acknowledgements

This study was supported by the National Institutes of Health (R37 GM 058822 to W.A.V.).

Author contributions

WT and WAvdD designed the study. WT and SCB performed all experiments. WT, SCB, LW and WAvdD analyzed the data, and WT and WAvdD wrote the manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare no competing financial interests.

Supplementary material

10295_2018_2110_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1855 kb)

References

  1. 1.
    Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RE, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160CrossRefGoogle Scholar
  2. 2.
    Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18CrossRefGoogle Scholar
  3. 3.
    Bindman NA, van der Donk WA (2013) A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J Am Chem Soc 135:10362–10371CrossRefGoogle Scholar
  4. 4.
    Booth MC, Bogie CP, Sahl H-G, Siezen RJ, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184CrossRefGoogle Scholar
  5. 5.
    Caetano T, Krawczyk JM, Mosker E, Süssmuth RD, Mendo S (2011) Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem Biol 18:90–100CrossRefGoogle Scholar
  6. 6.
    Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61–75CrossRefGoogle Scholar
  7. 7.
    Cox CR, Coburn PS, Gilmore MS (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 6:77–84CrossRefGoogle Scholar
  8. 8.
    Daly KM, Cotter PD, Hill C, Ross RP (2012) Lantibiotic production by pathogenic microorganisms. Curr Protein Pept Sci 13:509–523CrossRefGoogle Scholar
  9. 9.
    Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960CrossRefGoogle Scholar
  10. 10.
    Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA (2015) The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. eLife 4:07607Google Scholar
  11. 11.
    Furgerson Ihnken LA, Chatterjee C, van der Donk WA (2008) In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47:7352–7363CrossRefGoogle Scholar
  12. 12.
    Garg N, Tang W, Goto Y, van der Donk WA (2012) Geobacillins: lantibiotics from Geobacillus thermodenitrificans. Proc Natl Acad Sci USA 109:5241–5246CrossRefGoogle Scholar
  13. 13.
    Geissler S, Götz F, Kupke T (1996) Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178:284–288CrossRefGoogle Scholar
  14. 14.
    Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271CrossRefGoogle Scholar
  15. 15.
    Gilmore MS, Segarra RA, Booth MC (1990) An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58:3914–3923Google Scholar
  16. 16.
    Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339CrossRefGoogle Scholar
  17. 17.
    Hetrick KJ, van der Donk WA (2017) Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol 38:36–44CrossRefGoogle Scholar
  18. 18.
    Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505CrossRefGoogle Scholar
  19. 19.
    Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G (2014) Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 28:1780–1793CrossRefGoogle Scholar
  20. 20.
    Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71CrossRefGoogle Scholar
  21. 21.
    Li B, Cooper LE, van der Donk WA (2009) In vitro studies of lantibiotic biosynthesis. Methods Enzymol 458:533–558CrossRefGoogle Scholar
  22. 22.
    Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311:1464–1467CrossRefGoogle Scholar
  23. 23.
    Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163CrossRefGoogle Scholar
  24. 24.
    Lohans CT, Li JL, Vederas JC (2014) Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with d-amino acids. J Am Chem Soc 136:13150–13153CrossRefGoogle Scholar
  25. 25.
    McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103:17243–17248CrossRefGoogle Scholar
  26. 26.
    Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289CrossRefGoogle Scholar
  27. 27.
    Müller WM, Schmiederer T, Ensle P, Süssmuth RD (2010) In vitro biosynthesis of the prepeptide of type-III lantibiotic labyrinthopeptin A2 including formation of a C–C bond as a post-translational modification. Angew Chem Int Ed 49:2436–2440CrossRefGoogle Scholar
  28. 28.
    Nishie M, Nagao JI, Sonomoto K (2012) Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci 17:1–16CrossRefGoogle Scholar
  29. 29.
    Nishie M, Shioya K, Nagao J, Jikuya H, Sonomoto K (2009) ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. J Biosci Bioeng 108:460–464CrossRefGoogle Scholar
  30. 30.
    Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2015) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512CrossRefGoogle Scholar
  31. 31.
    Ortega MA, Velásquez JE, Garg N, Zhang Q, Joyce RE, Nair SK, van der Donk WA (2014) Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem Biol 9:1718–1725CrossRefGoogle Scholar
  32. 32.
    Plat A, Kuipers A, Rink R, Moll GN (2013) Mechanistic aspects of lanthipeptide leaders. Curr Protein Pept Sci 14:85–96CrossRefGoogle Scholar
  33. 33.
    Power SD, Adams RM, Wells JA (1986) Secretion and autoproteolytic maturation of subtilisin. Proc Natl Acad Sci USA 83:3096–3100CrossRefGoogle Scholar
  34. 34.
    Repka LM, Chekan JR, Nair SK, van der Donk WA (2017) Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 117:5457–5520CrossRefGoogle Scholar
  35. 35.
    Shi Y, Yang X, Garg N, van der Donk WA (2011) Production of lantipeptides in Escherichia coli. J Am Chem Soc 133:2338–2341CrossRefGoogle Scholar
  36. 36.
    Tang W, Dong S-H, Repka LM, He C, Nair SK, van der Donk WA (2015) Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage. Chem Sci 6:6270–6279CrossRefGoogle Scholar
  37. 37.
    Tang W, Thibodeaux GN, van der Donk WA (2016) The enterococcal cytolysin synthetase coevolves with substrate for stereoselective lanthionine synthesis. ACS Chem Biol 11:2438–2446CrossRefGoogle Scholar
  38. 38.
    Tang W, van der Donk WA (2012) Structural characterization of four prochlorosins: a novel class of lantipeptides produced by planktonic marine cyanobacteria. Biochemistry 51:4271–4279CrossRefGoogle Scholar
  39. 39.
    Tang W, van der Donk WA (2013) The sequence of the enterococcal cytolysin imparts unusual lanthionine stereochemistry. Nat Chem Biol 9:157–159CrossRefGoogle Scholar
  40. 40.
    Torres IO, Kuchenbecker KM, Nnadi CI, Fletterick RJ, Kelly MJ, Fujimori DG (2015) Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat Commun 6:6204CrossRefGoogle Scholar
  41. 41.
    van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, de Vos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588CrossRefGoogle Scholar
  42. 42.
    Van Tyne D, Gilmore MS (2017) Raising the alarmone: within-host evolution of antibiotic-tolerant Enterococcus faecium. MBio 8:e00066-17CrossRefGoogle Scholar
  43. 43.
    Van Tyne D, Martin MJ, Gilmore MS (2013) Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins 5:895–911CrossRefGoogle Scholar
  44. 44.
    Völler GH, Krawczyk B, Ensle P, Süssmuth RD (2013) Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation. J Am Chem Soc 135:7426–7429CrossRefGoogle Scholar
  45. 45.
    Walsh CT (2014) Blurring the lines between ribosomal and nonribosomal peptide scaffolds. ACS Chem Biol 9:1653–1661CrossRefGoogle Scholar
  46. 46.
    Wang J, Zhang L, Teng K, Sun S, Sun Z, Zhong J (2014) Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl Environ Microbiol 80:2633–2643CrossRefGoogle Scholar
  47. 47.
    Xu Y, Li X, Li R, Li S, Ni H, Wang H, Xu H, Zhou W, Saris PE, Yang W, Qiao M, Rao Z (2014) Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity. Acta Crystallogr D Biol Crystallogr 70:1499–1505CrossRefGoogle Scholar
  48. 48.
    Yang X, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chem Eur J 19:7662–7677CrossRefGoogle Scholar
  49. 49.
    Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Department of ChemistryHoward Hughes Medical Institute, University of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Broad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations