Advertisement

Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase

  • Sonia I. Maffioli
  • Margherita Sosio
  • Richard H. Ebright
  • Stefano DonadioEmail author
Natural Products - Original Paper

Abstract

Pseudouridimycin (PUM) is a novel pseudouridine-containing peptidyl-nucleoside antibiotic that inhibits bacterial RNA polymerase (RNAP) through a binding site and mechanism different from those of clinically approved RNAP inhibitors of the rifamycin and lipiarmycin (fidaxomicin) classes. PUM was discovered by screening microbial fermentation extracts for RNAP inhibitors. In this review, we describe the discovery and characterization of PUM. We also describe the RNAP-inhibitory and antibacterial properties of PUM. Finally, we review available information on the gene cluster and pathway for PUM biosynthesis and on the potential for discovering additional novel pseudouridine-containing nucleoside antibiotics by searching bacterial genome and metagenome sequences for sequences similar to pumJ, the pseudouridine-synthase gene of the PUM biosynthesis gene cluster.

Notes

Acknowledgements

This work was partially supported by NIH Grants GM041376 and AI104660 to RHE and partially supported from a Grant from MIUR Regione Lombardia to NAICONS. We are grateful to all coauthors of the two papers that provided the material for this review.

References

  1. 1.
    Amirkia V, Heinrich M (2015) Natural products and drug discovery: a survey of stakeholders in industry and academia. Front Pharmacol 6:237CrossRefGoogle Scholar
  2. 2.
    Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst S (2015) CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci USA 112:E4178–E4187CrossRefGoogle Scholar
  3. 3.
    Belogurov G et al (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 45:332–335CrossRefGoogle Scholar
  4. 4.
    Brown E, Wright G (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343CrossRefGoogle Scholar
  5. 5.
    Butler MS, Blaskovich MA, Cooper MA (2017) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot 70:3–24CrossRefGoogle Scholar
  6. 6.
    Campbell E, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst S (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912CrossRefGoogle Scholar
  7. 7.
    David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315CrossRefGoogle Scholar
  8. 8.
    Degen D et al (2014) Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 3:e02451CrossRefGoogle Scholar
  9. 9.
    Ebright RH (2017) Novel RNA polymerase inhibitor found in soil extracts provides hope for future antibacterial drugs. Future Med Chem 9:1857–1861CrossRefGoogle Scholar
  10. 10.
    Ericsson UB, Andersson ME, Engvall B, Nordlund P, Hallberg BM (2004) Expression, purification, crystallization and preliminary diffraction studies of the tRNA pseudouridine synthase TruD from Escherichia coli. Acta Crystallogr D Biol Crystallogr 60:775–776CrossRefGoogle Scholar
  11. 11.
    Feng Y et al (2015) Structural basis of transcription inhibition by CBR hydroxamidines and CBR pyrazoles. Structure 23:1470–1481CrossRefGoogle Scholar
  12. 12.
    Fernandes P (2015) The global challenge of new classes of antibacterial agents: an industry perspective. Curr Opin Pharmacol 24:7–11CrossRefGoogle Scholar
  13. 13.
    Garibyan L et al (2003) Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2:593–608CrossRefGoogle Scholar
  14. 14.
    Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232CrossRefGoogle Scholar
  15. 15.
    Hamma T, Ferré-D’Amaré AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135CrossRefGoogle Scholar
  16. 16.
    Ho MX, Hudson BP, Das K, Arnold E, Ebright RH (2009) Structures of RNA polymerase–antibiotic complexes. Curr Opin Struct Biol 19:715–723CrossRefGoogle Scholar
  17. 17.
    Holowachuk SA, Bal’a MF, Buddington RK (2003) A kinetic microplate method for quantifying the antibacterial properties of biological fluids. J Microbiol Methods 55:441–446CrossRefGoogle Scholar
  18. 18.
    Iorio M et al (2014) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9:398–404CrossRefGoogle Scholar
  19. 19.
    Jin DJ, Gross C (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58CrossRefGoogle Scholar
  20. 20.
    Jovanovic M, Burrows P, Bose D, Cámara B, Wiesler S, Weinzierl R, Zhang X, Wigneshweraraj S, Buck M (2011) An activity map of the Escherichia coli RNA polymerase bridge helix. J Biol Chem 286:14469–14479CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhong Z, Zhang W, Qian P-Y (2018) Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Comm 9:3273CrossRefGoogle Scholar
  22. 22.
    Lin W et al (2017) Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell 66:169–179CrossRefGoogle Scholar
  23. 23.
    Lin W et al (2018) Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol Cell 70:60–71CrossRefGoogle Scholar
  24. 24.
    Ma C, Yang X, Lewis PJ (2016) Bacterial transcription as a target for antibacterial drug development. Microbiol Mol Biol Rev 80:139–160CrossRefGoogle Scholar
  25. 25.
    Maffioli SI, Cruz JC, Monciardini P, Sosio M, Donadio S (2016) Advancing cell wall inhibitors towards clinical applications. J Ind Microbiol Biotechnol 43:177–184CrossRefGoogle Scholar
  26. 26.
    Maffioli SI et al (2017) Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169:1240–1248CrossRefGoogle Scholar
  27. 27.
    Maio A, Brandi L, Donadio S, Gualerzi CO (2016) The oligopeptide permease Opp mediates illicit transport of the bacterial P-site decoding inhibitor GE81112. Antibiotics 5:E17CrossRefGoogle Scholar
  28. 28.
    Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S (2014) Discovering new bioactive compounds from microbial sources. Microb Biotechnol 7:209–220CrossRefGoogle Scholar
  29. 29.
    Mukhopadhyay J et al (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307CrossRefGoogle Scholar
  30. 30.
    National Committee for Clinical Laboratory Standards (2010) Performance standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement—CLSI document M100-S20 (2010) NCCLS. Wayne, PennsylvaniaGoogle Scholar
  31. 31.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefGoogle Scholar
  32. 32.
    Niu G, Tan H (2015) Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 23:110–119CrossRefGoogle Scholar
  33. 33.
    Pesic A, Steinhaus B, Kemper S, Nachtigall J, Kutzner HJ, Höfle G, Süssmuth RD (2014) Isolation and structure elucidation of the nucleoside antibiotic strepturidin from Streptomyces albus DSM 40763. J Antibiot 67:471–477CrossRefGoogle Scholar
  34. 34.
    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606CrossRefGoogle Scholar
  35. 35.
    Sagitov V, Nikiforov V, Goldfarb A (1993) Dominant lethal mutations near the 5′ substrate binding site affect RNA polymerase propagation. J Biol Chem 268:2195–2202PubMedGoogle Scholar
  36. 36.
    Silver LL (2016) Natural products as a source of drug leads to overcome drug resistance. Future Microbiol 10:1711–1718CrossRefGoogle Scholar
  37. 37.
    Sosio M, Gaspari E, Iorio M, Pessina S, Medema MH, Bernasconi A, Simone M, Maffioli SI, Ebright RH, Donadio S (2018) Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics. Cell Chem Biol 25:540–549CrossRefGoogle Scholar
  38. 38.
    Sosunov V, Zorov S, Sosunova E, Nikolaev A, Zakeyeva I, Bass I, Goldfarb A, Nikiforov V, Severinov K, Mustaev A (2005) The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase. Nucl Acids Res 33:4202–4211CrossRefGoogle Scholar
  39. 39.
    Srivastava A et al (2011) New target for inhibition of bacterial RNA polymerase: “switch region”. Curr Opin Microbiol 14:532–543CrossRefGoogle Scholar
  40. 40.
    Svetlov V, Vassylyev D, Artsimovitch I (2004) Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J Biol Chem 279:38087–38090CrossRefGoogle Scholar
  41. 41.
    Temiakov D et al (2005) Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 19:655–666CrossRefGoogle Scholar
  42. 42.
    Tuske S et al (2005) Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 122:541–552CrossRefGoogle Scholar
  43. 43.
    Winn M, Goss RJ, Kimura K, Bugg TD (2010) Antimicrobial antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 27:279–304CrossRefGoogle Scholar
  44. 44.
    Wright GD (2017) Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 34:694–701CrossRefGoogle Scholar
  45. 45.
    Yuzenkova Y, Roghanian M, Zenkin N (2012) Multiple active centers of multi-subunit RNA polymerases. Transcription 3:115–118CrossRefGoogle Scholar
  46. 46.
    Zhang Y et al (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i + 1’ sites and prevents the binding of initiating nucleotides. eLife 3:e02450PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Naicons SrlMilanItaly
  2. 2.Waksman Institute of Microbiology and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA

Personalised recommendations