Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains

  • Yasushi Ogasawara
  • Tohru Dairi
Natural Products - Original Paper


Menaquinone is an obligatory component of the electron-transfer pathway in microorganisms. Its biosynthetic pathway was established by pioneering studies with Escherichia coli and it was revealed to be derived from chorismate by Men enzymes. However, we identified an alternative pathway, the futalosine pathway, operating in some microorganisms including Helicobacter pylori and Campylobacter jejuni, which cause gastric carcinoma and diarrhea, respectively. Because some useful intestinal bacteria, such as lactobacilli, use the canonical pathway, the futalosine pathway is an attractive target for development of chemotherapeutics for the abovementioned pathogens. In this mini-review, we summarize compounds that inhibit Mqn enzymes involved in the futalosine pathway discovered to date.


Menaquinone Biosynthesis Futalosine pathway Inhibitors 



This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas from MEXT, Japan (JSPS KAKENHI Grant number 16H06452) and Grants-in-Aid for Scientific Research from JSPS (18H03937) to T.D. We thank Robbie Lewis, MSc, from Edanz Group ( for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adams J, Pepping J (2005) Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. Am J Health Syst Pharm 62:1574–1581CrossRefGoogle Scholar
  2. 2.
    Arakawa C, Kuratsu M, Furihata K, Hiratsuka T, Itoh N, Seto H, Dairi T (2011) Diversity of the early step of the futalosine pathway. Antimicrob Agents Chemother 55:913–916CrossRefGoogle Scholar
  3. 3.
    Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cooper LE, Fedoseyenko D, Abdelwahed SH, Kim SH, Dairi T, Begley TP (2013) In vitro reconstitution of the radical S-adenosylmethionine enzyme MqnC involved in the biosynthesis of futalosine-derived menaquinone. Biochemistry 52:4592–4594CrossRefGoogle Scholar
  5. 5.
    Dahlback B, Villoutreix BO (2005) Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 25:1311–1320CrossRefGoogle Scholar
  6. 6.
    Dairi T, Kuzuyama T, Nishiyama M, Fujii I (2011) Convergent strategies in biosynthesis. Nat Prod Rep 28:1054–1086CrossRefGoogle Scholar
  7. 7.
    Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogs of 5’-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5:251–257CrossRefGoogle Scholar
  8. 8.
    Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321:1670–1673CrossRefGoogle Scholar
  9. 9.
    Joshi S, Mahanta N, Fedoseyenko D, Williams H, Begley TP (2017) Aminofutalosine synthase: evidence for captodative and aryl radical intermediates using beta-scission and SRN1 trapping reactions. J Am Chem Soc 139:10952–10955CrossRefGoogle Scholar
  10. 10.
    Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefGoogle Scholar
  11. 11.
    Lamson DW, Plaza SM (2003) The anticancer effects of vitamin K. Altern Med Rev 8:303–318PubMedGoogle Scholar
  12. 12.
    Li X, Apel D, Gaynor EC, Tanner ME (2011) 5’-methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni. J Biol Chem 286:19392–19398CrossRefGoogle Scholar
  13. 13.
    MacKellar FA, Grostic MF, Olson EC, Wnuk RJ (1971) Tirandamycin. I. Structure assignment. J Am Chem Soc 93:4943–4945CrossRefGoogle Scholar
  14. 14.
    Mahanta N, Fedoseyenko D, Dairi T, Begley TP (2013) Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme. J Am Chem Soc 135:15318–15321CrossRefGoogle Scholar
  15. 15.
    Matsui H, Takahashi T, Murayama SY, Kawaguchi M, Matsuo K, Nakamura M (2017) Protective efficacy of a hydroxy fatty acid against gastric Helicobacter infections. Helicobacter 22:e12430CrossRefGoogle Scholar
  16. 16.
    Meganathan R (2001) Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61:173–218CrossRefGoogle Scholar
  17. 17.
    Meyer CE (1971) Tirandamycin, a new antibiotic isolation and characterization. J Antibiot 24:558–560CrossRefGoogle Scholar
  18. 18.
    Nakamura H, Iitaka Y, Kitahara T, Okazaki T, Okami Y (1977) Structure of aplasmomycin. J Antibiot 30:714–719CrossRefGoogle Scholar
  19. 19.
    Ogasawara Y, Kondo K, Ikeda A, Harada R, Dairi T (2017) Identification of tirandamycins as specific inhibitors of the futalosine pathway. J Antibiot 70:798–800CrossRefGoogle Scholar
  20. 20.
    Okami Y, Okazaki T, Kitahara T, Umezawa H (1976) Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. J Antibiot 29:1019–1025CrossRefGoogle Scholar
  21. 21.
    Reusser F (1976) Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrob Agents Chemother 10:618–622CrossRefGoogle Scholar
  22. 22.
    Seto H, Jinnai Y, Hiratsuka T, Fukawa M, Furihata K, Itoh N, Dairi T (2008) Studies on a new biosynthetic pathway for menaquinone. J Am Chem Soc 130:5614–5615CrossRefGoogle Scholar
  23. 23.
    Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T (2018) Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot. (in press) CrossRefPubMedGoogle Scholar
  24. 24.
    Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331CrossRefGoogle Scholar
  25. 25.
    Tanaka R, Kunisada T, Kushida N, Yamada K, Ikeda S, Noike M, Ono Y, Itoh N, Takami H, Seto H, Dairi T (2011) Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori. J Antibiot 64:151–153CrossRefGoogle Scholar
  26. 26.
    Wang S, Cameron SA, Clinch K, Evans GB, Wu Z, Schramm VL, Tyler PC (2015) New antibiotic candidates against Helicobacter pylori. J Am Chem Soc 137:14275–14280CrossRefGoogle Scholar
  27. 27.
    Wang S, Haapalainen AM, Yan F, Du Q, Tyler PC, Evans GB, Rinaldo-Matthis A, Brown RL, Norris GE, Almo SC, Schramm VL (2012) A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry 51:6892–6894CrossRefGoogle Scholar
  28. 28.
    Yamamoto T, Matsui H, Yamaji K, Takahashi T, Overby A, Nakamura M, Matsumoto A, Nonaka K, Sunazuka T, Omura S, Nakano H (2016) Narrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pylori. J Infect Chemother 22:587–592CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations