Advertisement

Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria

  • Shotaro Hoshino
  • Hiroyasu OnakaEmail author
  • Ikuro AbeEmail author
Natural Products - Mini Review

Abstract

Bacterial secondary metabolites (SM) are rich sources of drug leads, and in particular, numerous metabolites have been isolated from actinomycetes. It was revealed by recent genome sequence projects that actinomycetes harbor much more secondary metabolite-biosynthetic gene clusters (SM-BGCs) than previously expected. Nevertheless, large parts of SM-BGCs in actinomycetes are dormant and cryptic under the standard culture conditions. Therefore, a widely applicable methodology for cryptic SM-BGC activation is required to obtain novel SM. Recently, it was discovered that co-culturing with mycolic-acid-containing bacteria (MACB) widely activated cryptic SM-BGCs in actinomycetes. This “combined-culture” methodology (co-culture methodology using MACB as the partner of actinomycetes) is easily applicable for a broad range of actinomycetes, and indeed, 33 novel SM have been successfully obtained from 12 actinomycetes so far. In this review, the development, application, and mechanistic analysis of the combined-culture method were summarized.

Keywords

Actinomycetes Secondary metabolites (SM) Mycolic acid-containing bacteria (MACB) Combined culture Secondary metabolite-biosynthetic gene clusters (SM-BGCs) 

Notes

Acknowledgements

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, JSPS KAKENHI Grant nos. JP16H06443 (to I.A.) and JP18H02120 (to H.O.), JST/NSFC Strategic International Collaborative Research Program (to I.A.), Institute for Fermentation (IFO), Osaka (to H.O.), Amano Enzyme, Inc (to H.O.), JSPS A3 Foresight Program (to H.O.), and JSPS Research Fellowships for Young Scientists (to S.H.). We would like to thank Dr. Shumpei Asamizu (The University of Tokyo) for providing useful advices, and graphical data used in the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adnani N, Vazquez-Rivera E, Adibhatla SN, Ellis GA, Braun DR, Bugni TS (2015) Investigation of interspecies interactions within marine micromonosporaceae using an improved co-culture approach. Mar Drug 13:6082–6098CrossRefGoogle Scholar
  2. 2.
    Adnani N, Chevrette MG, Adibhatla SN, Zhang F, Yu Q, Braun DR, Nelson J, Simpkins SW, McDonald BR, Myers CL, Piotrowski JS, Thompson CJ, Currie CR, Li L, Rajski SR, Bugni TS (2017) Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chem Biol 12:3093–3102CrossRefGoogle Scholar
  3. 3.
    Asamizu S, Ozaki T, Teramoto K, Satoh K, Onaka H (2015) Killing of mycolic acid-containing bacteria aborted induction of antibiotic production by Streptomyces in combined-culture. PLoS One.  https://doi.org/10.1371/journal.pone.0142372 Google Scholar
  4. 4.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefGoogle Scholar
  5. 5.
    Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446CrossRefGoogle Scholar
  6. 6.
    Derewacz DK, Covington BC, McLean JA, Bachmann BO (2015) Mapping microbial response metabolomes for induced natural product discovery. ACS Chem Biol 10:1998–2006CrossRefGoogle Scholar
  7. 7.
    Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968CrossRefGoogle Scholar
  8. 8.
    Doull JL, Vining LC (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32:449–454CrossRefGoogle Scholar
  9. 9.
    Earl DC, Ferrell PB Jr, Leelatian N, Froese JT, Reisman BJ, Irish JM, Bachmann BO (2018) Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat Commun.  https://doi.org/10.1038/s41467-017-02470-8 Google Scholar
  10. 10.
    Igarashi Y, Kim Y, In Y, Ishida T, Kan Y, Fujita T, Iwashita T, Tabata H, Onaka H, Furumai T (2010) Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org Lett 12:3402–3405CrossRefGoogle Scholar
  11. 11.
    Horinouchi S, Beppu T (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad Ser B Phys Biol sci 83:277–295CrossRefGoogle Scholar
  12. 12.
    Hoshino S, Zhang L, Awakawa T, Wakimoto T, Onaka H, Abe I (2015) Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot 68:342–344CrossRefGoogle Scholar
  13. 13.
    Hoshino S, Wakimoto T, Onaka H, Abe I (2015) Chojalactones A-C cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org Lett 17:1501–1504CrossRefGoogle Scholar
  14. 14.
    Hoshino S, Okada M, Wakimoto T, Zhang H, Hayashi F, Onaka H, Abe I (2015) Niizalactams A-C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J Nat Prod 78:3011–3017CrossRefGoogle Scholar
  15. 15.
    Hoshino S, Okada M, Awakawa T, Asamizu S, Onaka H, Abe I (2017) Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived rare actinomycete. Org Lett 19:4992–4995CrossRefGoogle Scholar
  16. 16.
    Hoshino S, Wong CP, Ozeki M, Zhang H, Hayashi F, Awakawa T, Asamizu S, Onaka H, Abe I (2018) Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. J Antibiot 71:653–657CrossRefGoogle Scholar
  17. 17.
    Hoshino S, Ozeki M, Wong CP, Zhang H, Hayashi F, Awakawa T, Morita H, Onaka H, Abe I (2018) Mirilactams C-E, novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chem Pharm Bull 66:660–667CrossRefGoogle Scholar
  18. 18.
    Hoshino S, Ozeki M, Awakawa T, Morita H, Onaka H, Abe I (2018) Catenulobactins A and B, heterocyclic peptides from culturing Catenuloplanes sp. with mycolic acid-containing bacterium. J Nat Prod 81:2106–2110CrossRefGoogle Scholar
  19. 19.
    Hsiao NH, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E (2009) Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem Biol 16:951–960CrossRefGoogle Scholar
  20. 20.
    Igarashi Y, Kan Y, Fujii K, Fujita T, Harada K, Naoki H, Tabata H, Onaka H, Furumai T (2001) Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II. Structure determination. J Antibiot 54:1045–1053CrossRefGoogle Scholar
  21. 21.
    Ikeda H, Shin-Ya K, Ōmura S (2014) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 41:233–250CrossRefGoogle Scholar
  22. 22.
    Kim Y, In Y, Ishida T, Onaka H, Igarashi Y (2013) Biosynthetic origin of alchivemycin A, a new polyketide from Streptomyces and absolute configuration of alchivemycin B. Org Lett 15:3514–3517CrossRefGoogle Scholar
  23. 23.
    Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y (1989) New virginiae butanolides from Streptomyces virginiae. J Antibiot 42:769–778CrossRefGoogle Scholar
  24. 24.
    Kunze B, Schabacher K, Zahner H, Zeeck A (1972) Metabolic products of microorganisms. 3 lipomycins. I. Isolation, characterization and first studies of the structure and the mechanism of action. Arch Mikrobiol 86:147–174CrossRefGoogle Scholar
  25. 25.
    Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127CrossRefGoogle Scholar
  26. 26.
    Kurosawa K, Maceachran DP, Sinskey AJ (2010) Antibiotic biosynthesis following horizontal gene transfer: new milestone for novel natural product discovery? Expert Opin Drug Discov 5:819–825CrossRefGoogle Scholar
  27. 27.
    Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165CrossRefGoogle Scholar
  28. 28.
    Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H, Li J, Liu XW, Kanagasundaram Y, Yang L, Liang ZX (2018) Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci Rep.  https://doi.org/10.1038/s41598-018-20018-8 Google Scholar
  29. 29.
    Nakashima T, Takahashi Y, Ōmura S (2017) Search for new compounds from Kitasato microbial library by physicochemical screening. Biochem Pharmacol 134:42–55CrossRefGoogle Scholar
  30. 30.
    Nazari B, Kobayashi M, Saito A, Hassaninasab A, Miyashita K, Fujii T (2013) Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Appl Environ Microbiol 79:707–713CrossRefGoogle Scholar
  31. 31.
    Ochi K (2017) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70:25–40CrossRefGoogle Scholar
  32. 32.
    Oh DC, Poulsen M, Currie CR, Clardy J (2011) Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org Lett 13:752–755CrossRefGoogle Scholar
  33. 33.
    Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T (2001) Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes. I. Purification and characterization. J Antibiot 54:1036–1044CrossRefGoogle Scholar
  34. 34.
    Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406CrossRefGoogle Scholar
  35. 35.
    Onaka H, Ozaki T, Mori Y, Izawa M, Hayashi S, Asamizu S (2015) Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. J Antibiot 68:594–597CrossRefGoogle Scholar
  36. 36.
    Ozaki T, Kurokawa Y, Hayashi S, Oku N, Asamizu S, Igarashi Y, Onaka H (2016) Insights into the biosynthesis of dehydroalanines in Goadsporin. ChemBioChem 17:218–223CrossRefGoogle Scholar
  37. 37.
    Park HB, Park JS, Lee SI, Shin B, Oh DC, Kwon HC (2017) Gordonic acid, a polyketide glycoside derived from bacterial coculture of Streptomyces and Gordonia species. J Nat Prod 80:2542–2546CrossRefGoogle Scholar
  38. 38.
    Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760CrossRefGoogle Scholar
  39. 39.
    Schulze CJ, Donia MS, Siqueira-Neto JL, Ray D, Raskatov JA, Green RE, McKerrow JH, Fischbach MA, Linington RG (2015) Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem Biol 10:2373–2381CrossRefGoogle Scholar
  40. 40.
    Skellam EJ, Stewart AK, Strangman WK, Wright JL (2013) Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: clarification of the biosynthetic pathway from a glutamate starter unit. J Antibiot 66:431–441CrossRefGoogle Scholar
  41. 41.
    Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41:90–96Google Scholar
  42. 42.
    Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580CrossRefGoogle Scholar
  43. 43.
    Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H (2015) 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett 17:1918–1921CrossRefGoogle Scholar
  44. 44.
    Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H (2016) Discovery and total synthesis of streptoaminals: antimicrobial [5,5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew Chem Int Ed Engl 55:10278–10282CrossRefGoogle Scholar
  45. 45.
    Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132CrossRefGoogle Scholar
  46. 46.
    Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefGoogle Scholar
  47. 47.
    Xu F, Nazari B, Moon K, Bushin LB, Seyedsayamdost MR (2017) Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc 139:9203–9212CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  2. 2.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  3. 3.Collaborative Research Institute for Innovative Microbiology, The University of TokyoTokyoJapan

Personalised recommendations