Dynamics of Pseudomonas putida biofilms in an upscale experimental framework

  • David R Espeso
  • Esteban Martínez-García
  • Ana Carpio
  • Víctor de LorenzoEmail author
Biotechnology Methods - Original Paper


Exploitation of biofilms for industrial processes requires them to adopt suitable physical structures for rendering them efficient and predictable. While hydrodynamics could be used to control material features of biofilms of the platform strain Pseudomonas putida KT2440 there is a dearth of experimental data on surface-associated growth behavior in such settings. Millimeter scale biofilm patterns formed by its parental strain P. putida mt-2 under different Reynolds numbers (Re) within laminar regime were analyzed using an upscale experimental continuous cultivation assembly. A tile-scan image acquisition process combined with a customized image analysis revealed patterns of dense heterogeneous structures at Re = 1000, but mostly flattened coverings sparsely patched for Re < 400. These results not only fix the somewhat narrow hydrodynamic regime under which P. putida cells form stable coatings on surfaces destined for large-scale processes, but also provide useful sets of parameters for engineering catalytic biofilms based on this important bacterium as a cell factory.


Pseudomonas putida Biofilm Upscale experimental device Reynolds number Image analysis 



The authors are indebted to S. Gutierrez and supporting team leading the confocal microscopy facility at the Centro Nacional de Biotecnología, JL Ocaña at Centro Laser Politécnica for his help measuring the rugosity of the polycarbonate probes, JR Arias and A Velázquez at the Universidad Politécnica de Madrid for their technical and material support in the design and fabrication of the device, and C Mark for editorial assistance. This work was funded by the HELIOS Project of the Spanish Ministry of Economy and Competitiveness BIO 2015-66960-C3-2-R (MINECO/FEDER), ARISYS (ERC-2012-ADG-322797), EmPowerPutida (EU-H2020-BIOTEC-2014-2015-6335536), MADONNA (H2020-FET-OPEN-RIA-2017-1 (766975) Contracts of the European Union, and InGEMICS-CM (B2017/BMD-3691) contract of the Comunidad de Madrid (FSE, FECER). Authors declare no conflict of interest.

Supplementary material

10295_2018_2070_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (PDF 5269 kb)


  1. 1.
    Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Castellón E, Chavarría M, de Lorenzo V, Zayat M, Levy D (2010) An electro-optical device from a biofilm structure created by bacterial activity. Adv Mater 22:4846–4850. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Carvalho CC (2007) Biofilms: recent developments on an old battle. Recent Pat Biotechnol 1:49–57CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Dos Santos VA, Heim S, Moore ER, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209–6222. CrossRefGoogle Scholar
  8. 8.
    Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Eguía E, Trueba A, Río-Calonge B, Girón A, Bielva C (2008) Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment. Int Biodeterior Biodegradation 62:79–87. CrossRefGoogle Scholar
  10. 10.
    Ehrlich GD, Stoodley P, Kathju S, Zhao Y, McLeod BR, Balaban N, Hu FZ, Sotereanos NG, Costerton JW, Stewart PS, Post JC, Lin Q (2005) Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res 437:59–66CrossRefGoogle Scholar
  11. 11.
    Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gjermansen M, Ragas P, Tolker-Nielsen T (2006) Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 265:215–224. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gross R, Lang K, Bühler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–2407. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Koch B, Jensen LE, Nybroe O (2001) A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45:187–195. CrossRefPubMedGoogle Scholar
  18. 18.
    Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302. CrossRefPubMedGoogle Scholar
  20. 20.
    Koutinas M, Lam M-C, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, De Lorenzo V, Dos Santos VAPM, Mantalaris A (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12:1705–1718. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  24. 24.
    Manuel CM, Nunes OC, Melo LF (2007) Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res 41:551–562. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mazzola M, Granatstein D, Elfving D, Mullinix K, Gu Y-H (2002) Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92:1363–1366. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Nikel PI, Martinez-Garcia E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR (2015) Biofilm formation as a response to ecological competition. PLoS Biol 13:e1002191. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Picioreanu C, van Loosdrecht MC, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2279–2290. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone Howard A (2011) Secondary flow as a mechanism for the formation of biofilm streamers. Biophys J 100:1392–1399CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Sbordone L, Bortolaia C (2003) Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Investig 7:181–188. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schachter B (2003) Slimy business—the biotechnology of biofilms. Nat Biotechnol 21:361. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1998) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85(Suppl 1):19s–28s. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    van Loosdrecht MC, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek 81:245–256CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Wuertz S, Bishop PL, Wilderer PA (2005) Biofilms in wastewater treatment: an interdisciplinary approach. vol 4. IWA Publishing. CrossRefGoogle Scholar
  44. 44.
    Xiong Y, Liu Y (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol 86:825–837. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Methods 39:109–119. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Dept de Matemática Aplicada, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.Systems Biology ProgramCentro Nacional de Biotecnología-CSICMadridSpain

Personalised recommendations