Surface-displayed porcine reproductive and respiratory syndrome virus from cell culture onto gram-positive enhancer matrix particles

  • Lan Li
  • Xuwen Qiao
  • Jin Chen
  • Yuanpeng Zhang
  • Qisheng ZhengEmail author
  • Jibo HouEmail author
Biotechnology Methods - Original Paper


Vaccine immunization is now one of the most effective ways to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. Impurity is one of the main factors affecting vaccine safety and efficacy. Here we present a novel innovative PRRSV purification approach based on surface display technology. First, a bifunctional protein PA-GRFT (protein anchor-griffithsin), the crucial factor in the purification process, was successfully produced in Escherichia coli yielding 80 mg/L of broth culture. Then PRRSV purification was performed by incubation of PA-GRFT with PRRSV and gram-positive enhancer matrix (GEM) particles, followed by centrifugation to collect virions loaded onto GEM particles. Our results showed that most of the bulk impurities had been removed, and PA-GRFT could capture PRRSV onto GEM particles. Our lactic acid bacteria-based purification method, which is promising as ease of operation, low cost and easy to scale-up, may represent a candidate method for the large-scale purification of this virus for vaccine production.


Lactic acid bacteria GEM particles Purification PRRSV Griffithsin 



This study was supported by grants from the Special Fund for Agro-scientific Research in the Public Interest (No. 201303046) and the Independent Innovation of Agricultural Sciences Program of Jiangsu Province (No. cx (14)2089).

Compliance with ethical standards

Conflict of interest

There is no conflict of interests.


  1. 1.
    Bohua L, Ming S, Lu Y, Xiaoyu D, Baochun L, Fenqin S, Li Z, Xizhao C (2016) Purification of porcine reproductive and respiratory syndrome virus using ultrafiltration and liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 1017–1018:182–186CrossRefGoogle Scholar
  2. 2.
    Bosma T, Kanninga R, Neef J, Audouy SA, van Roosmalen ML, Steen A, Buist G, Kok J, Kuipers OP, Robillard G (2006) Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl Environ Microbiol 72:880–889CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847CrossRefPubMedGoogle Scholar
  4. 4.
    Chand RJ, Trible BR, Rowland RR (2012) Pathogenesis of porcine reproductive and respiratory syndrome virus. Curr Opin Virol 2:256–263CrossRefPubMedGoogle Scholar
  5. 5.
    Fuqua JL, Wanga V, Palmer KE (2015) Improving the large scale purification of the HIV microbicide, griffithsin. BMC Biotechnol 15:12CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Giomarelli B, Schumacher KM, Taylor TE, Hartley JL, Mcmahon JB, Mori T (2006) Recombinant production of anti-HIV protein, griffithsin, by auto-induction in a fermentor culture. Protein Expr Purif 47:194–202CrossRefPubMedGoogle Scholar
  7. 7.
    Hou XL, Yu LY, Liu J, Wang GH (2007) Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine 26:24–31CrossRefPubMedGoogle Scholar
  8. 8.
    Hu J, Ni Y, Dryman BA, Meng XJ, Zhang C (2010) Purification of porcine reproductive and respiratory syndrome virus from cell culture using ultrafiltration and heparin affinity chromatography. J Chromatogr A 1217:3489–3493CrossRefPubMedGoogle Scholar
  9. 9.
    Ishag HZ, Li C, Wang F, Mao X (2016) Griffithsin binds to the glycosylated proteins (E and prM) of Japanese encephalitis virus and inhibit its infection. Virus Res 215:50–54CrossRefPubMedGoogle Scholar
  10. 10.
    Kouokam JC, Huskens D, Schols D, Johannemann A, Riedell SK, Walter W, Walker JM, Matoba N, O’Keefe BR, Palmer KE (2011) Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate. PLoS One 6:e22635CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kouokam JC, Lasnik AB, Palmer KE (2016) Studies in a murine model confirm the safety of griffithsin and advocate its further development as a microbicide targeting HIV-1 and other enveloped viruses. Viruses 8:311CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lan L, Zheng Q, Zhang Y, Li P, Fu Y, Hou J, Xiao X (2016) Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro. Adv Virol 161:1883–1890Google Scholar
  13. 13.
    Levendosky K, Mizenina O, Martinelli E, Jeanpierre N, Kizima L, Rodriguez A, Kleinbeck K, Bonnaire T, Robbiani M, Zydowsky TM (2011) Griffithsin and carrageenan combination to target herpes simplex virus 2 and human papillomavirus. Antimicrob Agents Chemother 59:7290–7298CrossRefGoogle Scholar
  14. 14.
    Li J, Tao S, Orlando R, Murtaugh MP (2016) N-glycosylation profiling of porcine reproductive and respiratory syndrome virus envelope glycoprotein 5. Virology 478:86–98CrossRefGoogle Scholar
  15. 15.
    Li PC, Qiao XW, Zheng QS, Hou JB (2016) Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis. Vaccine 34:696–702CrossRefPubMedGoogle Scholar
  16. 16.
    Lusvarghi S, Bewley CA (2016) Griffithsin: an antiviral lectin with outstanding therapeutic potential. Viruses 8:296CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lyoo YS (2015) Porcine reproductive and respiratory syndrome virus vaccine does not fit in classical vaccinology. Clin Exp Vaccine Res 4:159–165CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mao R, Zhou K, Han Z, Wang Y (2016) Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Fact 15:80CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Matanin BM, Huang Y, Meng XJ, Zhang C (2008) Purification of the major envelop protein GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) from native virions. J Virol Methods 147:127–135CrossRefPubMedGoogle Scholar
  20. 20.
    Meng XJ, Paul PS, Halbur PG (1994) Molecular cloning and nucleotide sequencing of the 3′-terminal genomic RNA of the porcine reproductive and respiratory syndrome virus. J Gen Virol 75(Pt 7):1795CrossRefPubMedGoogle Scholar
  21. 21.
    Meuleman P, Albecka A, Belouzard S, Vercauteren K, Verhoye L, Wychowski C, Lerouxroels G, Palmer KE, Dubuisson J (2011) Griffithsin has antiviral activity against hepatitis C virus. Antimicrob Agents Chemother 55:5159–5167CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 15:70CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Millet JK, Séron K, Labitt RN, Danneels A, Palmer KE, Whittaker GR, Dubuisson J, Belouzard S (2016) Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 133:1CrossRefPubMedGoogle Scholar
  24. 24.
    Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2:404–408CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mori T, O’Keefe BR, Sowder RC II, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, Mcmahon JB (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353CrossRefPubMedGoogle Scholar
  26. 26.
    Moulaei T, Alexandre KB, Shenoy SR, Meyerson JR, Krumpe LR, Constantine B, Wilson J, Buckheit RW Jr, McMahon JB, Subramaniam S (2015) Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus. Retrovirology 12:6CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nixon B, Stefanidou M, Mesquita PM, Fakioglu E, Segarra T, Rohan L, Halford W, Palmer KE, Herold BC (2013) Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. J Virol 87:6257–6269CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PKS, Mcmahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlfordlenane CL (2010) Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 84:2511–2521CrossRefPubMedGoogle Scholar
  29. 29.
    Urtasun N, Baieli MF, Cascone O, Wolman FJ, Miranda MV (2015) High-level expression and purification of recombinant wheat germ agglutinin in Rachiplusia nu larvae. Process Biochem 50:40–47CrossRefGoogle Scholar
  30. 30.
    Vamvaka E, Arcalis E, Ramessar K, Evans A, O’Keefe BR, Shattock RJ, Medina V, Stöger E, Christou P, Capell T (2016) Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnol J 14:1427CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vincenzi S, Zoccatelli G, Perbellini F, Rizzi C, Chignola R, Curioni A, Peruffo AD (2002) Quantitative determination of dietary lectin activities by enzyme-linked immunosorbent assay using specific glycoproteins immobilized on microtiter plates. J Agric Food Chem 50:6266–6270CrossRefPubMedGoogle Scholar
  32. 32.
    Wu WH, Fang Y, Rowland RR, Lawson SR, Christopher-Hennings J, Yoon KJ, Nelson EA (2005) The 2b protein as a minor structural component of PRRSV. Virus Res 114:177CrossRefPubMedGoogle Scholar
  33. 33.
    Xue J, Gao Y, Hoorelbeke B, Kagiampakis I, Zhao B, Demeler B, Balzarini J, Liwang PJ (2012) The role of individual carbohydrate-binding sites in the function of the potent anti-HIV lectin griffithsin. Mol Pharm 9:2613CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.National Research, Center of Engineering and Technology for Veterinary BiologicalsJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina

Personalised recommendations