Advertisement

Synthetic biology advances and applications in the biotechnology industry: a perspective

  • Leonard Katz
  • Yvonne Y. Chen
  • Ramon Gonzalez
  • Todd C. Peterson
  • Huimin Zhao
  • Richard H. BaltzEmail author
Metabolic Engineering and Synthetic Biology - Original Paper

Abstract

Synthetic biology is a logical extension of what has been called recombinant DNA (rDNA) technology or genetic engineering since the 1970s. As rDNA technology has been the driver for the development of a thriving biotechnology industry today, starting with the commercialization of biosynthetic human insulin in the early 1980s, synthetic biology has the potential to take the industry to new heights in the coming years. Synthetic biology advances have been driven by dramatic cost reductions in DNA sequencing and DNA synthesis; by the development of sophisticated tools for genome editing, such as CRISPR/Cas9; and by advances in informatics, computational tools, and infrastructure to facilitate and scale analysis and design. Synthetic biology approaches have already been applied to the metabolic engineering of microorganisms for the production of industrially important chemicals and for the engineering of human cells to treat medical disorders. It also shows great promise to accelerate the discovery and development of novel secondary metabolites from microorganisms through traditional, engineered, and combinatorial biosynthesis. We anticipate that synthetic biology will continue to have broadening impacts on the biotechnology industry to address ongoing issues of human health, world food supply, renewable energy, and industrial chemicals and enzymes.

Keywords

Biosensors Biotechnology industry Combinatorial biosynthesis CRISPR/Cas9 DNA assembly DNA synthesis Mammalian cells Metabolic engineering Natural products Synthetic biology 

References

  1. 1.
    Antoniou MN, Skipper KA, Anakok O (2013) Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 24:363–374PubMedCrossRefGoogle Scholar
  2. 2.
    Antonovsky N, Gleizer S, Noor E et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:115125CrossRefGoogle Scholar
  3. 3.
    Au LC, Yang FY, Yang WJ, Lo SH, Kao CE (1998) Gene synthesis by an LCR-based approach: high-level production of leptin-154 using synthetic gene in Escherichia coli. Biochem Biophys Res Commun 24:200–203CrossRefGoogle Scholar
  4. 4.
    Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184PubMedCrossRefGoogle Scholar
  5. 5.
    Bak RO, Porteus MH (2017) CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20:750–756PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772PubMedCrossRefGoogle Scholar
  7. 7.
    Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672PubMedCrossRefGoogle Scholar
  8. 8.
    Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–759PubMedCrossRefGoogle Scholar
  9. 9.
    Baltz RH (2015) The life and times of an industrial microbial geneticist: engineering actinomycetes and other subjects. SIMB News 65:100–112Google Scholar
  10. 10.
    Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43:343–370PubMedCrossRefGoogle Scholar
  11. 11.
    Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–575PubMedCrossRefGoogle Scholar
  12. 12.
    Baltz RH (2017) Molecular beacons to identify gifted microbes for genome mining. J Antibiot 70:639–646PubMedCrossRefGoogle Scholar
  13. 13.
    Baltz RH (2017) Microbial genome mining for natural product drug discovery. In: Newman D, Cragg G, Grothaus P (eds) Chemical biology of natural products. CRC Press, Boca Raton, pp 1–42Google Scholar
  14. 14.
    Baltz RH (2018) Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS derived antibiotics: a perspective. J Ind Mirobiol Biotechnol.  https://doi.org/10.1007/s10295-017-1999-8 CrossRefGoogle Scholar
  15. 15.
    Banyai W, Peck BJ, Fernandez A, Chen S, Indermuhle P (2015) De novo synthesized gene libraries. US Patent Application no. 2015/0038373A1Google Scholar
  16. 16.
    Boeke JD, Church G, Hessel A, Kelley NJ, Arkin A, Cai Y, Carlson R, Chakravarti A, Cornish VW, Holt L, Isaacs FJ, Kuiken T, Lajoie M, Lessor T, Lunshof J, Maurano MT, Mitchell LA, Rine J, Rosser S, Sanjana NE, Silver PA, Valle D, Wang H, Way JC, Yang L (2016) The genome project-write. Science 353:126–127PubMedCrossRefGoogle Scholar
  17. 17.
    Boles KS, Kannan K, Gill J, Felderman M, Gouvis H, Hubby B, Kamrud KI, Venter JC, Gibson DG (2017) Digital-to-biological converter for on-demand production of biologics. Nat Biotechnol 35:672–675PubMedCrossRefGoogle Scholar
  18. 18.
    Bonde MT, Kosuri S, Genee HJ, Sarup-Lytzen K, Church GM, Sommer MO, Wang HH (2015) Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth Biol 4:17–22PubMedCrossRefGoogle Scholar
  19. 19.
    Borovkov AY, Loskutov AV, Robida MD, Day KM, Cano JA, Olson TL, Patel H, Brown K, Hunter PD, Sykes KF (2010) High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Res 38:e180PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cady KC, Barbu M, DiPetrillo CG (2016) Compositions of and methods for in vitro viral genome engineering. US Patent Application no. 2016/0186147A1Google Scholar
  21. 21.
    Carlson R (2003) The pace and proliferation of biological technologies. Biosecur Bioterror 1:203–214PubMedCrossRefGoogle Scholar
  22. 22.
    Carr P, Park J, Lee Y-J, Yu T, Zhang S, Jacobson JM (2004) Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res 32:e162PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Caruthers MH (2011) A brief review of DNA and RNA chemical synthesis. Biochem Soc Trans 39:575–580PubMedCrossRefGoogle Scholar
  24. 24.
    Chang ZL, Chen YY (2017) CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med 23:430–450PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY (2018) Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 14:317–324PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chao Y, Yuan Y, Zhao H (2015) Recent advances in DNA assembly techniques. FEMS Yeast Res 15:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chen YY (2015) Efficient gene editing in primary human T cells. Trends Immunol 36:667–669PubMedCrossRefGoogle Scholar
  28. 28.
    Claassens NJ, Sousa DZ, Dos Santos VA, de Vos WM, van der Oost J (2016) Harnessing the power of microbial autotrophy. Nat Rev Microbiol 14:692–706PubMedCrossRefGoogle Scholar
  29. 29.
    Cobb RE, Ning J, Zhao H (2014) DNA assembly techniques for next generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41:469–477PubMedCrossRefGoogle Scholar
  30. 30.
    Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728PubMedCrossRefGoogle Scholar
  31. 31.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826PubMedCrossRefGoogle Scholar
  33. 33.
    Daringer NM, Dudek RM, Schwarz KA, Leonard JN (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth Biol 3:892–902PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Deaner M, Alper HS (2018) Promoter and terminator discovery and engineering. Adv Biochem Eng Biotechnol 162:21–44PubMedGoogle Scholar
  35. 35.
    DiEuliis D, Carter SR, Gronvall GK (2017) Options for synthetic DNA order screening, revisited. mSphere 2:e00319–e00417PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dormitzer PR, Suphaphiphat P, Gibson DG et al (2013) Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med 5:185ra68PubMedCrossRefGoogle Scholar
  37. 37.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096PubMedCrossRefGoogle Scholar
  38. 38.
    Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R (2011) Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6(10):1371Google Scholar
  39. 39.
    Feber D (2004) Microbes made to order. Science 303:158–161CrossRefGoogle Scholar
  40. 40.
    Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fu J, Bian XY, Hu SB et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446PubMedCrossRefGoogle Scholar
  42. 42.
    Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchinson CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci 105:20404–20409PubMedCrossRefGoogle Scholar
  43. 43.
    Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6954–6990CrossRefGoogle Scholar
  44. 44.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345PubMedCrossRefGoogle Scholar
  45. 45.
    Gibson DG, Smith HO, Hutchison CA, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901–903PubMedCrossRefGoogle Scholar
  46. 46.
    Gibson DG (2011) Enzymatic assembly overlapping DNA fragments. Methods Enzymol 498:349–361PubMedCrossRefGoogle Scholar
  47. 47.
    Gibson DG (2014) Programming biological operating systems: genome design, assembly and activation. Nat Methods 11:521–526PubMedCrossRefGoogle Scholar
  48. 48.
    Goeddel DV, Kleid D, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Nat Acad Sci USA 76:106–110PubMedCrossRefGoogle Scholar
  49. 49.
    Grada Z, Hegde M, Byrd T et al (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gronvall GK (2018) Safty, security, and serving the public interest in synthetic biology. J Ind Microbiol Biotechnol.  https://doi.org/10.1007/s10295-2026-4 PubMedCrossRefGoogle Scholar
  51. 51.
    Gwiazda KS, Grier AE, Sahni J et al (2016) High efficiency CRISPR/Cas9-mediated gene editing in primary human T-cells using mutant adenoviral E4orf6/E1b55k “helper” proteins. Mol Ther 24:1570–1580PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  53. 53.
    Halter MC, Zahn JA (2018) Characterization of a novel bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system. J Ind Microbiol Biotechnol 45:153–163PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ho P, Chen YY (2017) Mammalian synthetic biology in the age of genome editing and personalized medicine. Curr Opin Chem Biol 40:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Horbal L, Siegl T, Luzhetskyy A (2018) A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 8:491PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Itakara K, Hirose T, Crea R, Riggs AD, Heyneker HL, Boliver F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthetized gene for the hormone somatostatin. Science 198:1056–1106CrossRefGoogle Scholar
  59. 59.
    Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L (2017) Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163:1148–1155PubMedCrossRefGoogle Scholar
  60. 60.
    Jiang WJ, Zhao XJ, Gabrieli T, Lou CB, Ebenstein Y, Zhu TF (2015) Cas9-Assisted Targeting of CHromosome segments (CATCH) enables one-step targeted cloning of large gene clusters. Nat Commun 6:8101PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Johnson IS (1982) Human insulin from recombinant DNA technology. Science 219:632–637CrossRefGoogle Scholar
  63. 63.
    Karas BJ, Jablanovic J, Irvine E, Sun L, Ma L, Weyman PD, Gibson DG, Glass JI, Venter JC, Hutchison CA, Smith HO, Suzuki Y (2014) Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 9:743–750PubMedCrossRefGoogle Scholar
  64. 64.
    Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176PubMedCrossRefGoogle Scholar
  65. 65.
    Kitada T, DiAndreth B, Weiss R (2018) Programming gene and engineered-cell therapies with synthetic biology. Science 359:651CrossRefGoogle Scholar
  66. 66.
    Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75PubMedCrossRefGoogle Scholar
  67. 67.
    Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488PubMedCrossRefGoogle Scholar
  68. 68.
    Kosuri S, Eroshenko N, Leproust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507PubMedCrossRefGoogle Scholar
  70. 70.
    Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR, Resnick MA (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93:491–496PubMedCrossRefGoogle Scholar
  71. 71.
    Lee ME, DeLoache WC, Cervantes B, Dueber JE (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol 18:975–986CrossRefGoogle Scholar
  72. 72.
    Lee H, Kim H, Kim S, Ryu T, Kim H, Bang D, Kwon S (2015) A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform. Nat Commun 6:6073PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedCrossRefGoogle Scholar
  75. 75.
    Lian J, HamediRad M, Zhao H (2017) Combinatorial metabolic engineering using as orthogonal tri-functional CRISPR system. Nat Commun 8:1688PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liang J, Liu Z, Ang E, Zhao H (2017) Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method. Nucleic Acids Res 45:e94PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Liang L, Liu R, Garst AD, Lee T, Nogué VSI, Beckham GT, Gill RT (2017) CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab Eng 41:1–10PubMedCrossRefGoogle Scholar
  78. 78.
    Lim KI, Klimczak R, Xu JH et al (2010) Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci USA 107:12475–12480PubMedCrossRefGoogle Scholar
  79. 79.
    Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Luo Y, Zhang L, Barton KW, Zhao H (2015) Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol 4:1001–1010PubMedCrossRefGoogle Scholar
  81. 81.
    Ma S, Tang N, Tian J (2012) DNA synthesis, assembly and applications in synthetic biology. Curr Opin Chem Biol 16:260–267PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefGoogle Scholar
  84. 84.
    Maurer K, Cooper J, Caraballo M et al (2006) Electrochemically generated acid and its containment to 100 micron reaction areas for the production of DNA microarrays. PLoS One 1:e34PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Meadows AL, Hawkins KM, Tsegaye Y et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697PubMedCrossRefGoogle Scholar
  86. 86.
    Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176PubMedCrossRefGoogle Scholar
  87. 87.
    Minhaz SM (2008) A theoretical model for template-free synthesis of long DNA sequence. Syst Synth Biol 2:67–73CrossRefGoogle Scholar
  88. 88.
    Morsut L, Roybal KT, Xiong X et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164:780–791PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Müller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais JC, Vorholt JA (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201PubMedCrossRefGoogle Scholar
  90. 90.
    Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650PubMedCrossRefGoogle Scholar
  91. 91.
    Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459PubMedCrossRefGoogle Scholar
  92. 92.
    Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T (2016) Synthetic biology routes to bio-artificial intelligence. Essays Biochem 60(4):381–391PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Nielson AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352:aac7341CrossRefGoogle Scholar
  94. 94.
    Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 2164:1185–1197CrossRefGoogle Scholar
  95. 95.
    Peterson TC, Trefzer A, Poehmerer T (2015) High efficiency, small volume nucleic acid synthesis. US Patent Application No. 2015/0344876Google Scholar
  96. 96.
    Phelan RM, Sachs D, Petkiewicz SJ et al (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166PubMedCrossRefGoogle Scholar
  97. 97.
    Porteus MH, Carroll D (2017) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973CrossRefGoogle Scholar
  98. 98.
    Qasim W, Zhan H, Samarasinghe S et al (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9:374CrossRefGoogle Scholar
  99. 99.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform fos sequence-specific control of gene expression. Cell 152:1173–1183PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Quan J, Saaem I, Tang N, Ma S, Negre N, Gong H, White KP, Tian J (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29:449–452PubMedCrossRefGoogle Scholar
  101. 101.
    Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27PubMedCrossRefGoogle Scholar
  102. 102.
    Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran, Cai Y, Boeke JD, Bader JS (2017) Design of a synthetic yeast genome. Science 355:1040–1044PubMedCrossRefGoogle Scholar
  103. 103.
    Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  104. 104.
    Ronda C, Pedersen LE, Sommer MO, Nielsen AT (2016) CRMAGE: CRISPR Optimized MAGE Recombineering. Sci Rep 6:19452PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roy S, Caruthers M (2013) Synthesis of DNA/RNA and their analogs via phosphonamidite and H-phosphonate chemistries. Molecules 18:14269–14284CrossRefGoogle Scholar
  106. 106.
    Saaem I, Ma S, Quan J, Tian J (2012) Error correction of microchip synthesized genes using Surveyor nuclease. Nucleic Acids Res 40:1–8CrossRefGoogle Scholar
  107. 107.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27:946–950PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schwartz JJ, Lee C, Shendure J (2012) Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nat Methods 9:913–915PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sekiya T, Takeya T, Brown EL, Belagaje R, Contreras R, Fritz HJ, Gait MJ, Lees RG, Ryan MJ, Khorana HG (1979) Total synthesis of a tyrosine suppressor transfer RNA gene: enzymatic joinings to form a total 207-base pair-long DNA. J Biol Chem 254:5787–5801PubMedGoogle Scholar
  110. 110.
    Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16PubMedCrossRefGoogle Scholar
  111. 111.
    Shi S, Ang EL, Zhao H (2018) In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol.  https://doi.org/10.1007/s10295-1-018-2004-x CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106PubMedCrossRefGoogle Scholar
  114. 114.
    Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxynucleotides. Gene 164:49–53PubMedCrossRefGoogle Scholar
  115. 115.
    Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principle and prospects. Angew Chem Int Ed 56:3770–3823CrossRefGoogle Scholar
  116. 116.
    Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster form Klebsiella oxytoca. Proc Natl Acad Sci USA 109:7085–7090PubMedCrossRefGoogle Scholar
  117. 117.
    Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis form programmable DNA microchips. Nature 432:1050–1054PubMedCrossRefGoogle Scholar
  118. 118.
    Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029PubMedCrossRefGoogle Scholar
  120. 120.
    Tsuji T, Niida Y (2008) Development of a simple and highly sensitive mutation screening system by enzyme mismatch cleavage with optimized conditions for standard laboratories. Electrophoresis 29:1473–1483PubMedCrossRefGoogle Scholar
  121. 121.
    Voigt CA (2012) Synthetic biology. ACS Synth Biol 1:12Google Scholar
  122. 122.
    Voigt CA, Keasling JD (2005) Programming cellular function. Nat Chem Biol 1:304–307PubMedCrossRefGoogle Scholar
  123. 123.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–886PubMedCrossRefGoogle Scholar
  126. 126.
    Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–670PubMedCrossRefGoogle Scholar
  127. 127.
    Wintle BC, Boehm CR, Rhodes C, Molloy JC, Millett P, Adam L, Breitling R, Carlson R, Casagrande R, Dando M, Doubleday R, Drexler E, Edwards B, Ellis T, Evans NG, Hammond R, Haseloff J, Kahl L, Kuiken T, Lichman BR, Matthewman CA, Napier JA, ÓhÉigeartaigh SS, Patron NJ, Perello E, Shapira P, Tait J, Takano E, Sutherland WJ (2017) A transatlantic perspective on 20 emerging issues in biological engineering. Elife 6:e30247PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wright DA, Thiobodeau-Beganny S, Sander JD et al (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652PubMedCrossRefGoogle Scholar
  129. 129.
    Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751PubMedCrossRefGoogle Scholar
  130. 130.
    Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797PubMedCrossRefGoogle Scholar
  131. 131.
    Yamanaka K, Reynolds KA, Kersten RD et al (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Nat Acad Sci USA 111:1957–1962PubMedCrossRefGoogle Scholar
  132. 132.
    Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452PubMedCrossRefGoogle Scholar
  133. 133.
    Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, Adams PD, Katz L, Keasling JD (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short chain ketone production. ACS Synth Biol 6:139–147PubMedCrossRefGoogle Scholar
  134. 134.
    Yuzawa S, Backman WH, Keasling JD, Katz L (2018) Synthetic biology of polyketide synthases. J Ind Microbiol Biotechnol.  https://doi.org/10.1007/s10295-018-2021-9 PubMedCrossRefGoogle Scholar
  135. 135.
    Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY (2016) T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zeitoun RI, Garst AD, Degen GD, Pines G, Mansell TJ, Mills TY, Boyle NR, Gill RT (2015) Multiplexed tracking of the evolutionary trajectory of combinatorial genome engineered populations. Nat Biotechnol 33:631–637PubMedCrossRefGoogle Scholar
  137. 137.
    Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575–10585PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotech 30:354–359CrossRefGoogle Scholar
  140. 140.
    Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang E, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609CrossRefGoogle Scholar
  141. 141.
    Zhang YP, Sun J, Ma Y (2017) Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44:773–784PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Leonard Katz
    • 1
  • Yvonne Y. Chen
    • 2
  • Ramon Gonzalez
    • 3
  • Todd C. Peterson
    • 4
  • Huimin Zhao
    • 5
  • Richard H. Baltz
    • 6
    Email author
  1. 1.QB3 InstituteUniversity of California-BerkeleyEmeryvilleUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of California-Los AngelesLos AngelesUSA
  3. 3.Departments of Chemical and Biomolecular Engineering and BioengineeringRice UniversityHoustonUSA
  4. 4.Synthetic Genomics, Inc.La JollaUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of IllinoisUrbanaUSA
  6. 6.CognoGen Biotechnology ConsultingSarasotaUSA

Personalised recommendations