Advertisement

Reprogramming Halomonas for industrial production of chemicals

  • Xiangbin Chen
  • Linping Yu
  • Guanqing Qiao
  • Guo-Qiang Chen
Metabolic Engineering and Synthetic Biology - Original Paper
  • 215 Downloads

Abstract

Halomonas spp. are able to grow under a high salt concentration at alkali pH, they are able to resist contamination by other microbes. Development of Halomonas spp. as platform production strains for the next-generation industrial biotechnology (NGIB) is intensively studied. Among Halomonas spp., Halomonas bluephagenesis is the best studied one with available engineering tools and methods to reprogram it for production of various polyhydroxyalkanoates, proteins, and chemicals. Due to its contamination resistance, H. bluephagenesis can be grown under open and continuous processes not just in the labs but also in at least 1000 L fermentor scale. It is expected that NGIB based on Halomonas spp. be able to engineer for production of increasing number of products in a competitive manner.

Keywords

Halomonas Next-generation industrial biotechnology NGIB PHB Polyhydroxyalkanoates Chromosome engineering 

Abbreviations

ALA

5-aminolevulinic acid

CDW

Cell dry weight

CRISPR(i)

Clustered regularly interspaced short palindromic repeats (interference)

GBL

γ-butyrolactone

IPTG

Isopropyl β-D-thiogalactoside

NGIB

Next-generation industrial biotechnology

PHA

Polyhydroxyalkanoates

PHB

Poly(3-hydroxybutyrate)

PHBV

Poly(3-hydroxybutyarte-co-3-hydroxyvalerate)

P3HB4HB

Poly(3-hydroxybutyarte-co-4-hydroxybutyrate)

RBS

Ribosomal-binding site

RNAP

RNA polymerase

SEVA

Standard European Vector Architecture

Notes

Acknowledgements

This study has been supported by National Natural Science Foundation of China (Grant No. 21761132013 and 31430003).

References

  1. 1.
    Aharon O (2002) Halophilic Microorganisms and their Environments. Kluwer, New YorkGoogle Scholar
  2. 2.
    Altenbuchner J (2016) Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl Environ Microb 82:5421–5427.  https://doi.org/10.1128/aem.01453-16 CrossRefGoogle Scholar
  3. 3.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefPubMedGoogle Scholar
  4. 4.
    Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP (2016) Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium. Appl Environ Microbiol 82:6109–6119.  https://doi.org/10.1128/aem.02128-16 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cai L, Tan D, Aibaidula G, Dong XR, Chen JC, Tian WD, Chen GQ (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships. Microb Cell Fact 10:88.  https://doi.org/10.1186/1475-2859-10-88 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866.  https://doi.org/10.1002/biot.201200085 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotech 50:94–100.  https://doi.org/10.1016/j.copbio.2017.11.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen XB, Yin J, Ye JW, Zhang HQ, Che XM, Ma YM, Li MY, Wu LP, Chen GQ (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresource Technol 244:534–541.  https://doi.org/10.1016/j.biortech.2017.07.149 CrossRefGoogle Scholar
  9. 9.
    Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167.  https://doi.org/10.1016/j.ymben.2017.06.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Coronado M, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71.  https://doi.org/10.1111/j.1574-6968.2000.tb08935.x PubMedCrossRefGoogle Scholar
  11. 11.
    de Almeida A, Nikel PI, Giordano AM, Pettinari MJ (2007) Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli. Appl Environ Microb 73:7912–7916.  https://doi.org/10.1128/aem.01900-07 CrossRefGoogle Scholar
  12. 12.
    Doan VT, Tran HP, Nguyen TB, Nguyen TT, Duong ML, Quillaguaman J (2012) Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam. Microbiologyopen 1:395–406.  https://doi.org/10.1002/mbo3.44 CrossRefGoogle Scholar
  13. 13.
    Fallet C, Rohe P, Franco-Lara E (2010) Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng 107:124–133.  https://doi.org/10.1002/bit.22750 CrossRefPubMedGoogle Scholar
  14. 14.
    Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82PubMedGoogle Scholar
  15. 15.
    Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91.  https://doi.org/10.1016/j.ymben.2014.02.006 CrossRefPubMedGoogle Scholar
  16. 16.
    Gartland KM, Bruschi F, Dundar M, Gahan PB, Viola Magni M, Akbarova Y (2013) Progress towards the ‘Golden Age’ of biotechnology. Curr Opin Biotech 24(Suppl 1):S6–S13.  https://doi.org/10.1016/j.copbio.2013.05.011 CrossRefPubMedGoogle Scholar
  17. 17.
    Goncalves FA, dos Santos ES, de Macedo GR (2015) Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater. J Basic Microbiol 55:695–708.  https://doi.org/10.1002/jobm.201400589 CrossRefPubMedGoogle Scholar
  18. 18.
    Gupta A, Reizman IMB, Reisch CR, Prather KLJ (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35:273.  https://doi.org/10.1038/nbt.3796 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gutiérrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727.  https://doi.org/10.1111/j.1365-2672.2007.03407.x CrossRefPubMedGoogle Scholar
  20. 20.
    Guzmán H, Van-Thuoc D, Martin J, Hatti-Kaul R, Quillaguamán J (2009) A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol 84:1069–1077.  https://doi.org/10.1007/s00253-009-2036-2 CrossRefPubMedGoogle Scholar
  21. 21.
    Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Bioch Bioph Sin 47:231–243.  https://doi.org/10.1093/abbs/gmv007 CrossRefGoogle Scholar
  22. 22.
    Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37.  https://doi.org/10.1016/j.ymben.2017.09.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76.  https://doi.org/10.1021/cb7002434 CrossRefPubMedGoogle Scholar
  24. 24.
    Koller M, Marsalek L, de Sousa Miranda, Dias M, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38.  https://doi.org/10.1016/j.nbt.2016.05.001 CrossRefGoogle Scholar
  25. 25.
    Lan LH, Zhao H, Chen JC, Chen GQ (2016) Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP. Biotechnol J 11:1595–1604.  https://doi.org/10.1002/biot.201600459 CrossRefPubMedGoogle Scholar
  26. 26.
    Li T, Chen XB, Chen JC, Wu Q, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511.  https://doi.org/10.1002/biot.201400084 CrossRefPubMedGoogle Scholar
  27. 27.
    Li T, Elhadi D, Chen GQ (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43:29–36.  https://doi.org/10.1016/j.ymben.2017.07.007 CrossRefPubMedGoogle Scholar
  28. 28.
    Li T, Guo YY, Qiao GQ, Chen GQ (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5:1264–1274.  https://doi.org/10.1021/acssynbio.6b00105 CrossRefPubMedGoogle Scholar
  29. 29.
    Li TT, Li T, Ji WY, Wang QY, Zhang HQ, Chen GQ, Lou CB, Ouyang Q (2016) Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp. Biotechnol J 11:219–227.  https://doi.org/10.1002/biot.201400828 CrossRefPubMedGoogle Scholar
  30. 30.
    Lillo JG, Rodriguez-Valera F (1990) Effetcs of culture conditions on poly(beta-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microb 56:2517–2521Google Scholar
  31. 31.
    Noda S, Kondo A (2017) Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol 35:785–796.  https://doi.org/10.1016/j.tibtech.2017.05.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Oh J, Baik J, Lim SH (2014) A model independent S/W framework for search-based software testing. Sci World J 2014:11.  https://doi.org/10.1155/2014/126348 CrossRefGoogle Scholar
  33. 33.
    Oren A (2002) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63.  https://doi.org/10.1038/sj/jim/7000176 CrossRefPubMedGoogle Scholar
  34. 34.
    Ouyang PF, Wang H, Hajnal I, Wu Q, Guo YY, Chen GQ (2018) Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 45:20–31.  https://doi.org/10.1016/j.ymben.2017.11.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Panda AK, Khan RH, Rao K, Totey SM (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 75:161–172.  https://doi.org/10.1016/s0168-1656(99)00157-1 CrossRefPubMedGoogle Scholar
  36. 36.
    Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801.  https://doi.org/10.1016/j.biotechadv.2010.06.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y, Chen GQ (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229.  https://doi.org/10.1016/j.ymben.2018.03.018 CrossRefPubMedGoogle Scholar
  38. 38.
    Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696.  https://doi.org/10.1007/s00253-009-2397-6 CrossRefPubMedGoogle Scholar
  39. 39.
    Quillaguaman J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Micr 54:721–725.  https://doi.org/10.1099/ijs.0.02800-0 CrossRefGoogle Scholar
  40. 40.
    Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline syst 1:5.  https://doi.org/10.1186/1746-1448-1-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemoth 57:609–618.  https://doi.org/10.1093/jac/dkl024 CrossRefGoogle Scholar
  42. 42.
    Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450.  https://doi.org/10.1016/j.biotechadv.2010.02.006 CrossRefPubMedGoogle Scholar
  43. 43.
    Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313CrossRefPubMedGoogle Scholar
  44. 44.
    Shivanand P, Mugeraya G, Kumar A (2013) Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Ann Microbiol 63:1257–1263.  https://doi.org/10.1007/s13213-012-0583-8 CrossRefGoogle Scholar
  45. 45.
    Silva-Rocha R, Martinez-Garcia E, Calles B, Chavarria M, Arce-Rodriguez A, de las Heras A, David Paez-Espino A, Durante-Rodriguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675.  https://doi.org/10.1093/nar/gks1119 CrossRefPubMedGoogle Scholar
  46. 46.
    Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technol 102:8130–8136.  https://doi.org/10.1016/j.biortech.2011.05.068 CrossRefGoogle Scholar
  47. 47.
    Tanadchangsaeng N, Yu J (2012) Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng 109:2808–2818.  https://doi.org/10.1002/bit.24546 CrossRefPubMedGoogle Scholar
  48. 48.
    Tao W, Lv L, Chen GQ (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Fact 16:48.  https://doi.org/10.1186/s12934-017-0655-3 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotech 30:59–65.  https://doi.org/10.1016/j.copbio.2014.06.001 CrossRefPubMedGoogle Scholar
  50. 50.
    Wang ZH, Ma P, Chen J, Zhang J, Chen CB, Chen GQ (2011) A transferable heterogeneous two-hybrid system in Escherichia coli based on polyhydroxyalkanoates synthesis regulatory protein PhaR. Microb Cell Fact 10:21.  https://doi.org/10.1186/1475-2859-10-21 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104.  https://doi.org/10.1007/s00253-013-5285-z CrossRefPubMedGoogle Scholar
  52. 52.
    Ye JW, Huang WZ, Wang DS, Chen FY, Yin J, Li T, Zhang HQ, Chen GQ (2018) Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J 13:e1800074.  https://doi.org/10.1002/biot.201800074 CrossRefPubMedGoogle Scholar
  53. 53.
    Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442.  https://doi.org/10.1016/j.biotechadv.2014.10.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ (2014) Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp. Appl Microbiol Biotechnol 98:8987–8997.  https://doi.org/10.1007/s00253-014-5959-1 CrossRefPubMedGoogle Scholar
  55. 55.
    Yue HT, Ling C, Yang T, Chen XB, Chen YL, Deng HT, Wu Q, Chen JL, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108.  https://doi.org/10.1186/1754-6834-7-108 CrossRefGoogle Scholar
  56. 56.
    Zhang LH, Lang YJ, Nagata S (2009) Efficient production of ectoine using ectoine-excreting strain. Extremophiles 13:717–724.  https://doi.org/10.1007/s00792-009-0262-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Zhao H, Wei H, Liu X, Yao Z, Xu M, Wei D, Wang J, Wang X, Chen GQ (2016) Structural insights on pha binding protein PhaP from Aeromonas hydrophila. Sci Rep 6:39424.  https://doi.org/10.1038/srep39424 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhao H, Zhang HM, Chen X, Li T, Wu Q, Ouyang Q, Chen GQ (2017) Novel T7-like expression systems used for Halomonas. Metab Eng 39:128–140.  https://doi.org/10.1016/j.ymben.2016.11.007 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Xiangbin Chen
    • 1
    • 2
    • 3
  • Linping Yu
    • 1
    • 2
    • 3
  • Guanqing Qiao
    • 1
    • 2
    • 3
  • Guo-Qiang Chen
    • 1
    • 2
    • 3
    • 4
  1. 1.MOE Lab of Bioinformatics, School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
  3. 3.Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijingChina
  4. 4.Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of ManchesterManchesterUK

Personalised recommendations