Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences

  • Joseph Groom
  • Daehwan Chung
  • Sun-Ki Kim
  • Adam Guss
  • Janet Westpheling
Genetics and Molecular Biology of Industrial Organisms - Original Paper


A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.


Plasmid Thermophile Genetics Consolidated bioprocessing RecA 



JG was supported for a portion of this work by an NIH 5T32GM007103 Predoctoral Training Grant to the Genetics Department of the University of Georgia. Funding was provided by The BioEnergy Science (BESC) and The Center for Bioenergy Innovation (CBI), U.S. Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

10295_2018_2049_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1154 kb)


  1. 1.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E (ed) The prokaryotes—prokaryotic physiology and biochemistry. Springer, Berlin, pp 215–266Google Scholar
  3. 3.
    Bianco PR, Kowalczykowski SC (2005) RecA Protein, in Encyclopedia of Life Sciences (eLS). Wiley, pp 1–8Google Scholar
  4. 4.
    Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 8(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Butala M, Žgur-Bertok D, Busby SJW (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66(1):82–93CrossRefPubMedGoogle Scholar
  6. 6.
    Capaldo FN, Ramsey G, Barbour SD (1974) Analysis of the growth of recombination-deficient strains of Escherichia coli K-12. J Bacteriol 118(1):242–249PubMedPubMedCentralGoogle Scholar
  7. 7.
    Castan P, Casares L, Barbe J, Berenguer J (2003) Temperature-dependent hypermutational phenotype in recA mutants of Thermus thermophilus HB27. J Bacteriol 185(16):4901–4907CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Castillo F, Benmohamed A, Szatmari G (2017) Xer site specific recombination: double and single recombinase systems. Front Microbiol 8:453PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chung D, Cha M, Farkas J, Westpheling J (2013) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8(5):e62881CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA 111(24):8931–8936CrossRefPubMedGoogle Scholar
  11. 11.
    Chung D, Verbeke TJ, Cross KL, Westpheling J, Elkins JG (2015) Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification. Biotechnol Biofuels 8(1):1–11CrossRefGoogle Scholar
  12. 12.
    Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J (2015) Homologous Expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One 10(3):e0119508CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark AJ, Margulies AD (1965) Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc Natl Acad Sci 53:451–459CrossRefPubMedGoogle Scholar
  14. 14.
    Clausen A, Mikkelsen MJ, Schröder I, Ahring BK (2004) Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum. Plasmid 52(2):131–138CrossRefPubMedGoogle Scholar
  15. 15.
    Cox MM (1999) Recombination DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63:311–366CrossRefPubMedGoogle Scholar
  16. 16.
    Deng Y, Olson DG, Zhou J, Herring CD, Shaw JA (2013) Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 15:151–158CrossRefPubMedGoogle Scholar
  17. 17.
    Gomez RF, Snedecor B, Mendez B (1980) Development of genentic principles in Clostridium thermocellum. Developments in industrial microbiology, vol 22. Society for Industrial Microbiology, Arlington, pp 87–95Google Scholar
  18. 18.
    Grant CE, Bailey TL, Noble W (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J (2016) Promiscuous plasmid replication in thermophiles: use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature. Metab Eng Commun 3:30–38CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Groom J, Chung D, Young J, Westpheling J (2014) Heterologous complementation of a pyrF deletion in Caldicellulosiruptor hydrothermalis generates a new host for the analysis of biomass deconstruction. Biotechnol Biofuels 7(1):132CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5(1):30CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRefPubMedGoogle Scholar
  23. 23.
    Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF (2016) Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Front Microbiol 7:1481CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2016) Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates. Biotechnol Biofuels 9:176CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim S-K, Groom J, Chung D, Elkins J, Westpheling J (2017) Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance. Biotechnol Biofuels 10(1):66CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kuempel PL, Henson JM, Dircks L, Tecklenburg M, Lim DF (1991) dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3(8):799–811PubMedGoogle Scholar
  27. 27.
    Lamed R, Bayer EA (1988) The cellulosome of Clostridium thermocellum. In: Allen IL (ed) Advances in applied microbiology, vol 33. Academic Press, Cambridge, pp 1–46Google Scholar
  28. 28.
    Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot M-LL, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P (2007) The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 3(7):e117CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lenhart JS, Schroeder JW, Walsh BW, Simmons LA (2012) DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 76(3):530–564CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC (2015) Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 31:44–52CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Z, Guiliani N, Appia-Ayme C, Borne F, Ratouchniak J, Bonnefoy V (2000) Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J Bacteriol 182(8):2269–2276CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71(1):71–100CrossRefPubMedGoogle Scholar
  33. 33.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226CrossRefPubMedGoogle Scholar
  34. 34.
    Martin B, Garcia P, Marie-Pierre C, Claverys J-PP (1995) The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 15(2):367–379CrossRefPubMedGoogle Scholar
  35. 35.
    Olson DG, Lynd LR (2012) Chap. 17: transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330CrossRefPubMedGoogle Scholar
  36. 36.
    Olson DG, Lynd LR (2012) Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles. J Biol Eng 6:5CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Olson DG, Lynd LR (2012) Transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330CrossRefPubMedGoogle Scholar
  38. 38.
    Olson DG, Maloney M, Lanahan AA, Hon S, Hauser LJ, Lynd LR (2015) Identifying promoters for gene expression in Clostridium thermocellum. Metab Eng Commun 2:23–29CrossRefGoogle Scholar
  39. 39.
    Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405CrossRefPubMedGoogle Scholar
  40. 40.
    Papanek BA, Biswas R, Rydzak T, Guss AM (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng 32:49–54CrossRefPubMedGoogle Scholar
  41. 41.
    Rhee MS, Kim J-WW, Qian Y, Ingram LO, Shanmugam KT (2007) Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans. Plasmid 58(1):13–22CrossRefPubMedGoogle Scholar
  42. 42.
    Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM (2017) Deletion of type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng 41:182–191CrossRefPubMedGoogle Scholar
  43. 43.
    Sciochetti SA, Blakely GW, Piggot PJ (2001) Growth phase variation in cell and nucleoid morphology in a Bacillus subtilis recA mutant. J Bacteriol 183(9):2963–2968CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Skarstad K, Boye E (1993) Degradation of individual chromosomes in recA mutants of Escherichia coli. J Bacteriol 175(17):5505–5509CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Soutschek-Bauer E, Scholz W, Grill E, Staudenbauer WL (1987) Thermostability and superhelicity of plasmid DNA in Bacillus stearothermophilus. Mol Gen Genet 209(3):575–579CrossRefPubMedGoogle Scholar
  46. 46.
    Stirling CJ, Szatmari G, Stewart G, Smith MC, Sherratt DJ (1988) The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7(13):4389–4395PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR (2016) Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels 9:116CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vierling S, Weber T, Wohlleben W (2001) Evidence that an additional mutation is required to tolerate insertional inactivation of the Streptomyces lividans recA gene. J Bacteriol 183(14):4374–4381CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zyskind JW, Svitil AL, Stine WB, Biery MC, Smith DW (1992) RecA protein of Escherichia coli and chromosome partitioning. Mol Microbiol 6(17):2525–2537CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Joseph Groom
    • 1
    • 2
    • 6
  • Daehwan Chung
    • 3
    • 5
    • 6
  • Sun-Ki Kim
    • 1
    • 5
    • 6
  • Adam Guss
    • 4
    • 5
    • 6
  • Janet Westpheling
    • 1
    • 5
    • 6
  1. 1.Department of Genetics, Davison Life Sciences BuildingUniversity of GeorgiaAthensUSA
  2. 2.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA
  3. 3.National Renewable Energy LaboratoryBiosciences CenterGoldenUSA
  4. 4.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Oak Ridge National Laboratory, The BioEnergy Science CenterOak RidgeUSA
  6. 6.Oak Ridge National Laboratory, The Center for BioEnergy InnovationOak RidgeUSA

Personalised recommendations