Identification and manipulation of a novel locus to improve cell tolerance to short-chain alcohols in Escherichia coli

  • Yan Chen
  • Ying Wang
  • Tian-Hua Chen
  • Ming-Dong Yao
  • Wen-Hai Xiao
  • Bing-Zhi Li
  • Ying-Jin YuanEmail author
Bioenergy/Biofuels/Biochemicals - Original Paper


Escherichia coli KO11 is a popular ethanologenic strain, but is more sensitive to ethanol than other producers. Here, an ethanol-tolerant mutant EM was isolated from ultraviolet mutagenesis library of KO11. Comparative genomic analysis added by piecewise knockout strategy and complementation assay revealed EKO11_3023 (espA) within the 36.6-kb deletion from KO11 was the only locus responsible for ethanol sensitivity. Interestingly, when espA was deleted in strain W (the parent strain of KO11), ethanol tolerance was dramatically elevated to the level of espA-free hosts [e.g., MG1655 and BL21(DE3)]. And overexpression of espA in strains MG1655 and BL21(DE3) led to significantly enhanced ethanol sensitivity. In addition to ethanol, deletion of espA also improved cell tolerance to other short-chain (C2–C4) alcohols, including methanol, isopropanol, n-butanol, isobutanol and 2-butanol. Therefore, espA was responsible for short-chain alcohol sensitivity of W-strains compared to other cells, which provides a potential engineering target for alcohols production.


Synthetic biology Cell tolerance Short-chain alcohols Escherichia coli espA 



This work was financially supported by the Ministry of Science and Technology of China (“973” Program, 2014CB745100), the National Natural Science Foundation of China (21621004, 21390203, 21622605 and 21576198) and Innovative Talents and Platform Program of Tianjin (16PTSYJC00050 and 16PTGCCX00140).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10295_2017_1996_MOESM1_ESM.docx (140 kb)
Supplementary material 1 (DOCX 140 kb)


  1. 1.
    Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genom 12:9. CrossRefGoogle Scholar
  2. 2.
    Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866CrossRefPubMedGoogle Scholar
  3. 3.
    Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    le Bui M, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC (2015) Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 204:33–44. CrossRefGoogle Scholar
  5. 5.
    Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223. CrossRefPubMedGoogle Scholar
  6. 6.
    Cheon S, Kim HM, Gustavsson M, Lee SY (2016) Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr Opin Chem Biol 35:10–21. CrossRefPubMedGoogle Scholar
  7. 7.
    Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE 8:e57628. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. CrossRefPubMedGoogle Scholar
  10. 10.
    Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuel 4:32. CrossRefGoogle Scholar
  12. 12.
    Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5:1932. CrossRefGoogle Scholar
  13. 13.
    Gao X, Jiang L, Zhu L, Xu Q, Xu X, Huang H (2016) Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. J Biotechnol 224:55–63. CrossRefPubMedGoogle Scholar
  14. 14.
    Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Progr 19:612–623. CrossRefGoogle Scholar
  15. 15.
    Goodarzi H, Bennett BD, Amini S, Reaves ML, Hottes AK, Rabinowitz JD, Tavazoie S (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol Syst Biol 6:378. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jh M (1992) A short course in bacterial genetics. A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  17. 17.
    Jones CM, Hernandez Lozada NJ, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biot 99:9381–9393. CrossRefGoogle Scholar
  18. 18.
    Kobayashi R, Suzuki T, Yoshida M (2007) Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66:100–109. CrossRefPubMedGoogle Scholar
  19. 19.
    Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS ONE 8:e54031. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2013) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Menouni R, Hutinet G, Petit MA, Ansaldi M (2015) Bacterial genome remodeling through bacteriophage recombination. Fems Microbiol Let 362:1–10. CrossRefGoogle Scholar
  22. 22.
    Nicolaou SA, Gaida SM, Papoutsakis ET (2012) Exploring the combinatorial genomic space in Escherichia coli for ethanol tolerance. Biotech J 7:1337–1345. CrossRefGoogle Scholar
  23. 23.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Micro 57:893–900Google Scholar
  24. 24.
    Shah AA, Wang C, Chung YR, Kim JY, Choi ES, Kim SW (2013) Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J Biosci Bioeng 115:253–258. CrossRefPubMedGoogle Scholar
  25. 25.
    Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y (2016) DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnol Biofuel 9:114. CrossRefGoogle Scholar
  26. 26.
    Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J Mol Biol 394:653–680. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang C, Pfleger BF, Kim SW (2017) Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Chem Biol 45:92. (Epub 2017 Mar 11) CrossRefGoogle Scholar
  28. 28.
    Wang C, Yang L, Shah AA, Choi ES, Kim SW (2015) Dynamic interplay of multidrug transporters with TolC for isoprenol tolerance in Escherichia coli. Sci Rep-UK 5:16505. CrossRefGoogle Scholar
  29. 29.
    Woodruff LB, Boyle NR, Gill RT (2013) Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metab Eng 17:1–11. CrossRefPubMedGoogle Scholar
  30. 30.
    Woodruff LB, Pandhal J, Ow SY, Karimpour-Fard A, Weiss SJ, Wright PC, Gill RT (2013) Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metab Eng 15:124–133. CrossRefPubMedGoogle Scholar
  31. 31.
    Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biot 20:132–138CrossRefGoogle Scholar
  32. 32.
    Zhang F, Qian X, Si H, Xu G, Han R, Ni Y (2015) Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microb Cell Fact 14:175. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biot 77:355–366. CrossRefGoogle Scholar
  34. 34.
    Zingaro KA, Papoutsakis ET (2012) Toward a semisynthetic stress response system to engineer microbial solvent tolerance. mBio 3:429–493. CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  • Yan Chen
    • 1
    • 2
  • Ying Wang
    • 1
    • 2
  • Tian-Hua Chen
    • 1
    • 2
  • Ming-Dong Yao
    • 1
    • 2
  • Wen-Hai Xiao
    • 1
    • 2
  • Bing-Zhi Li
    • 1
    • 2
  • Ying-Jin Yuan
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  2. 2.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations