Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid

  • Xue Zhang
  • Jian Zhang
  • Jiasheng Xu
  • Qian Zhao
  • Qian WangEmail author
  • Qingsheng Qi
Metabolic Engineering and Synthetic Biology - Original Paper


Single-cell biorefineries are an interesting strategy for using different components of feedstock to produce multiple high-value biochemicals. In this study, a strategy was applied to refine glucose and fatty acid to produce 5-aminolevulinic acid (ALA) and polyhydroxyalkanoates (PHAs). To express the ALA and PHAs dual-production system efficiently and stably, multiple copies of the poly-β-3-hydroxybutyrate (PHB) synthesis operon were integrated into the chromosome of Escherichia coli DH5αΔpoxB. The above strain harboring the ALA C5 synthesis pathway genes hemA and hemL resulted in coproduction of 38.2% PHB (cell dry weight, CDW) and 3.2 g/L extracellular ALA. To explore coproduction of ALA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the PHBV synthetic pathway was also integrated into engineered E. coli and coexpressed with hemA and hemL; cells produced 38.9% PHBV (CDW) with 10.3 mol% 3HV fractions and 3.0 g/L ALA. The coproduction of ALA with PHB and PHBV can improve the utilization of carbon sources and maximize the value derived from the feedstock.


5-Aminolevulinic acid Polyhydroxyalkanoates Escherichia coli Coproduction Single-cell biorefinery 



This work was supported by the National Natural Science Foundation of China (31670047 and 31370085).

Compliance with ethical standards

Conflict of interest

The authors declare no financial or commercial conflict of interest.


  1. 1.
    Aldor IS, Kim SW, Prather KL, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 68(8):3848–3854CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14(5):475–483CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49(3):170–174CrossRefPubMedGoogle Scholar
  5. 5.
    Burnham DC (1970) Simple measurement of thermal lensing effects in laser rods. Appl Opt 9(7):1727–1728CrossRefPubMedGoogle Scholar
  6. 6.
    Chen Q, Wang Q, Wei G, Liang Q, Qi Q (2011) Production in Escherichia coli of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol 77(14):4886–4893CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Choi JI, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65(10):4363–4368PubMedPubMedCentralGoogle Scholar
  8. 8.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 55(1–2):165–169CrossRefPubMedGoogle Scholar
  10. 10.
    Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q (2015) A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep 5:9684CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101(19):7675–7678CrossRefPubMedGoogle Scholar
  12. 12.
    Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13(5):492–498CrossRefPubMedGoogle Scholar
  13. 13.
    Kiatpapan P, Murooka Y (2001) Construction of an expression vector for propionibacteria and its use in production of 5-aminolevulinic acid by Propionibacterium freudenreichii. Appl Microbiol Biotechnol 56(1–2):144–149CrossRefPubMedGoogle Scholar
  14. 14.
    Larsen R, Gozzelino R, Jeney V, Tokaji L, Bozza FA, Japiassu AM, Bonaparte D, Cavalcante MM, Chora A, Ferreira A et al (2010) A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med 2(51):51ra71CrossRefPubMedGoogle Scholar
  15. 15.
    Lee SY, Lee KM, Chan HN, Steinbuchel A (1994) Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol Bioeng 44(11):1337–1347CrossRefPubMedGoogle Scholar
  16. 16.
    Lee SY, Yim KS, Chang HN, Chang YK (1994) Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol 32(2):203–211CrossRefPubMedGoogle Scholar
  17. 17.
    Li M, Wang J, Geng Y, Li Y, Wang Q, Liang Q, Qi Q (2012) A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb Cell Fact 11:19CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li R, Chen Q, Wang PG, Qi Q (2007) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75(5):1103–1109CrossRefPubMedGoogle Scholar
  19. 19.
    Li T, Guo YY, Qiao GQ, Chen GQ (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5(11):1264–1274CrossRefPubMedGoogle Scholar
  20. 20.
    Liang Q, Qi Q (2014) From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 32(7):1328–1335CrossRefPubMedGoogle Scholar
  21. 21.
    Lin J, Fu W, Cen P (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100(7):2293–2297CrossRefPubMedGoogle Scholar
  22. 22.
    Mauzerall D, Granick S (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem 219(1):435–446PubMedGoogle Scholar
  23. 23.
    Patte J (1996) Biosynthesis of threonine and lysine. In: Escherichia coli and Salmonella: cellular and molecular biology, vol 1. pp 528–541Google Scholar
  24. 24.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMedGoogle Scholar
  25. 25.
    Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl Environ Microbiol 66(4):1311–1320CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28(2):289–309CrossRefPubMedGoogle Scholar
  27. 27.
    Shang L, Yim SC, Park HG, Chang HN (2004) Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnol Prog 20(1):140–144CrossRefPubMedGoogle Scholar
  28. 28.
    Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–4436CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Steinbuchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5(3):535–542CrossRefPubMedGoogle Scholar
  30. 30.
    Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 9(2–4):217–230CrossRefPubMedGoogle Scholar
  31. 31.
    Steinbuchel A, Fuchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427CrossRefPubMedGoogle Scholar
  32. 32.
    Tsai PS, Nageli M, Bailey JE (2002) Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol Bioeng 79(5):558–567CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 8:47CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang Q, Liu X, Qi Q (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 98(9):3923–3931CrossRefPubMedGoogle Scholar
  35. 35.
    Xie L, Hall D, Eiteman MA, Altman E (2003) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl Microbiol Biotechnol 63(3):267–273CrossRefPubMedGoogle Scholar
  36. 36.
    Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98(1):95–104CrossRefPubMedGoogle Scholar
  37. 37.
    Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol 82(9):2709–2717CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yu X, Jin H, Cheng X, Wang Q, Qi Q (2016) Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbiol Res 192:292–299CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  • Xue Zhang
    • 1
  • Jian Zhang
    • 1
  • Jiasheng Xu
    • 1
  • Qian Zhao
    • 1
  • Qian Wang
    • 1
    Email author
  • Qingsheng Qi
    • 1
  1. 1.National Glycoengineering Research Center, State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations