Reduced methanol input induces increased protein output by AOX1 promoter in a trans-acting elements engineered Pichia pastoris

  • Jinjia Wang
  • Xiaolong Wang
  • Lei Shi
  • Yuanxing Zhang
  • Xiangshan ZhouEmail author
  • Menghao CaiEmail author
Fermentation, Cell Culture and Bioengineering - Short Communication


High oxygen consumption and heat release caused by methanol catabolism usually bring difficulties to industrial scale-up and cost for protein expression driven by methanol-induced AOX1 promoter in Pichia pastoris. Here, reduced methanol feeding levels were investigated for expression of insulin precursor in a trans-acting elements engineered P. pastoris strain MF1-IP. Insulin precursor expression level reached 6.69 g/(L supernatant) at the methanol feeding rate of 6.67 mL/(h·L broth), which was 59% higher than that in the wild-type strain WT-IP at the methanol feeding rate of 12 mL/(h·L broth). Correspondingly, the insulin precursor expression level in fermentation broth and maximum specific insulin precursor production rate was 137 and 77% higher than the WT-IP, respectively. However, oxygen consumption and heat evolution were reduced, and the highest oxygen consumption rate and heat evolution rate of the MF1-IP were 18.0 and 37.7% lower than the WT-IP, respectively.


Pichia pastoris Insulin precursor Methanol induction AOX1 promoter Protein expression 



This work was supported by the Shanghai Science and Technology Innovation Action Plan (17JC1402400), Fundamental Research Funds for the Central Universities (22A201514040), National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204) and Talent Program of School of Biotechnology in East China University of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Ahn J, Hong J, Park M, Lee H, Lee E, Kim C, Lee J, Choi ES, Jung JK, Lee H (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol 75:3528–3534CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brierley R, Siegel R, Bussineau C, Craig W, Holtz G, Davis G (1990) Mixed feed recombinant yeast fermentation. US Patent WO9003431Google Scholar
  3. 3.
    Celik E, Calik P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118CrossRefPubMedGoogle Scholar
  4. 4.
    Çelik E, Çalık P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 26:473–484. CrossRefPubMedGoogle Scholar
  5. 5.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefPubMedGoogle Scholar
  6. 6.
    Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208CrossRefPubMedGoogle Scholar
  7. 7.
    Gong X, Ding C, Liu L, Wu J (2013) Enhancement of human insulin precursor production by increasing the copy number in Pichia pastoris. Acta Microbiol Sin 53:545–552Google Scholar
  8. 8.
    Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas N (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 9:31CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443CrossRefPubMedGoogle Scholar
  10. 10.
    Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K (2000) High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng 90:280–288CrossRefPubMedGoogle Scholar
  11. 11.
    Li P, Anumanthan A, Gao X-G, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia Pastoris. Appl Biochem Biotechnol 142:105–124CrossRefPubMedGoogle Scholar
  12. 12.
    Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193CrossRefPubMedGoogle Scholar
  13. 13.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270CrossRefPubMedGoogle Scholar
  14. 14.
    Mansur M, Cabello C, Hernández L, País J, Varas L (2005) Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol Lett 27:339–345CrossRefPubMedGoogle Scholar
  15. 15.
    Mateles RI (1971) Calculation of the oxygen required for cell production. Biotechnol Bioeng 13:581–582CrossRefPubMedGoogle Scholar
  16. 16.
    Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20:1097–1108CrossRefPubMedGoogle Scholar
  17. 17.
    Niu H, Jost L, Pirlot N, Sassi H, Daukandt M, Rodriguez C, Fickers P (2013) A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut(+)/pAOX1-lacZ strain. Microb Cell Fact 12:33CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pais-Chanfrau JM, García Y, Besada V, Castellanos-Serra L, Cabello CI, Hernández L, Mansur M, Plana L, Hidalgo A, Támbara Y, Abrahantes-Pérez MC, del Toro Y, Valdés J, Martínez E (2004) Improving the expression of mini-proinsulin in Pichia pastoris. Biotechnol Lett 26:1269–1272CrossRefPubMedGoogle Scholar
  19. 19.
    Pais JM, Varas L, Valdés J, Cabello C, Rodríguez L, Mansur M (2003) Modeling of mini-proinsulin production in Pichia pastoris using the AOX promoter. Biotechnol Lett 25:251–255CrossRefPubMedGoogle Scholar
  20. 20.
    Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact 15:1–11CrossRefGoogle Scholar
  21. 21.
    Sreenivas S, Krishnaiah SM, Shyam Mohan AH, Mallikarjun N, Govindappa N, Chatterjee A, Sastry KN (2016) Disruption of KEX1 gene reduces the proteolytic degradation of secreted two-chain insulin glargine in Pichia pastoris. Protein Expr Purif 118:1–9CrossRefPubMedGoogle Scholar
  22. 22.
    Tadayuku I, Shuichi A (1976) A convenient method to estimate the rate of heat evolution in fermentation. Appl Chem Biotechnol 26:559–567Google Scholar
  23. 23.
    Trinh LB, Phue JN, Shiloah J (2003) Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol Bioeng 82:438–444CrossRefPubMedGoogle Scholar
  24. 24.
    Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol 30:385–404CrossRefGoogle Scholar
  25. 25.
    Wang J, Wang X, Shi L, Qi F, Zhang P, Zhang Y, Zhou X, Song Z, Cai M (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep 7:41850CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang Y, Liang Z, Zhang Y, Yao S, Xu Y, Tang Y, Zhu S, Cui D, Feng Y (2001) Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnol Bioeng 73:74–79CrossRefPubMedGoogle Scholar
  27. 27.
    Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44CrossRefPubMedGoogle Scholar
  28. 28.
    Wu D, Chu J, Hao YY, Wang YH, Zhuang YP, Zhang SL (2011) High efficient production of recombinant human consensus interferon mutant in high cell density culture of Pichia pastoris using two phases methanol control. Process Biochem 46:1663–1669CrossRefGoogle Scholar
  29. 29.
    Xie T, Liu Q, Xie F, Liu H, Zhang Y (2008) Secretory expression of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Prep Biochem Biotechnol 38:308–317CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36:1611–1619CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang P, Zhang W, Zhou X, Bai P, Cregg JM, Zhang Y (2010) Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl Environ Microbiol 76:6108–6118CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang W, Bevins MA, Plantz BA, Smith LA, Meagher MM (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of Botulinum neurotoxin, Serotype A. Biotechnol Bioeng 70:1–8CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang X, Zhang X, Liang S, Ye Y, Lin Y (2013) Key regulatory elements of a strong constitutive promoter, PGCW14, from Pichia pastoris. Biotechnol Lett 35:2113–2119CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu T, Guo M, Tang Z, Zhang M, Zhuang Y, Chu J, Zhang S (2009) Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol 107:954–963CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
  3. 3.Shanghai Collaborative Innovation Center for BiomanufacturingShanghaiChina

Personalised recommendations