Journal of Industrial Microbiology & Biotechnology

, Volume 44, Issue 11, pp 1551–1560 | Cite as

Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin

  • Su Jin Lee
  • Geun-Young Sim
  • Youngshim Lee
  • Bong-Gyu Kim
  • Joong-Hoon AhnEmail author
Metabolic Engineering and Synthetic Biology - Short Comunication


Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.


N-Hydroxycinnamoyl serotonin N-Hydroxycinnamoyl tryptamine 



This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ00948301), Rural Development Administration, the Priority Research Centers Program through the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology (2009-0093824), and Korea Institute of Planning and Evaluation for Technology (IPET) in Food, Agriculture, Forestry and Fisheries (115013-02).

Supplementary material

10295_2017_1975_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3307 kb)


  1. 1.
    An DG, Cha MN, Nadarajan SP et al (2016) Bacterial synthesis of four hydroxycinnamic acids. Appl Biol Chem 59:173–179. doi: 10.1007/s13765-015-0137-4 CrossRefGoogle Scholar
  2. 2.
    Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256. doi: 10.1016/0167-7799(96)10033-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Bongaerts J, Krämer M, Müller U et al (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300. doi: 10.1006/mben.2001.0196 CrossRefPubMedGoogle Scholar
  4. 4.
    Campos L, Lisón P, López-Gresa MP et al (2014) Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact 27:1159–1169. doi: 10.1094/MPMI-04-14-0104-R CrossRefPubMedGoogle Scholar
  5. 5.
    Cho JG, Huh J, Jeong RH et al (2015) Inhibition effect of phenyl compounds from the Oryza sativa roots on melanin production in murine B16-F10 melanoma cells. Nat Prod Res 29:1052–1054. doi: 10.1080/14786419.2014.968155 CrossRefPubMedGoogle Scholar
  6. 6.
    Clifford MN (1999) Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J Sci Food Agric 79:362–372. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362:AID-JSFA256>3.0.CO;2-D CrossRefGoogle Scholar
  7. 7.
    Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54:121–138. doi: 10.1016/S0031-9422(00)00050-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Guillet G, De Luca V (2005) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol 137:692–699. doi: 10.1104/pp.104.050294 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589. doi: 10.1139/b02-065 CrossRefGoogle Scholar
  10. 10.
    Jang S-M, Ishihara A, Back K (2004) Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A: serotonin N-(hydroxycinnamoyl)transferase. Plant Physiol 135:346–356. doi: 10.1104/pp.103.038372 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jendresen CB, Stahlhut SG, Li M et al (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81:4458–4476. doi: 10.1128/AEM.00405-15 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kang K, Back K (2009) Production of phenylpropanoid amides in recombinant Escherichia coli. Metab Eng 11:64–68. doi: 10.1016/j.ymben.2008.08.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Kang K, Park S, Kim YS et al (2009) Biosynthesis and biotechnological production of serotonin derivatives. Appl Microbiol Biotechnol 83:27–34. doi: 10.1007/s00253-009-1956-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Kawashima S, Hayashi M, Takii T et al (1998) Serotonin derivative, N-(p-coumaroyl) serotonin, inhibits the production of TNF-α, IL-1α, IL-1β, and IL-6 by endotoxin-stimulated human blood monocytes. J Interf Cytokine Res 18:428–432. doi: 10.1089/jir CrossRefGoogle Scholar
  15. 15.
    Kim BG, Kim HJ, Ahn J-H (2012) Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J Agric Food Chem 60:11143–11148. doi: 10.1021/jf302123c CrossRefPubMedGoogle Scholar
  16. 16.
    Kim MJ, Kim B-G, Ahn J-H (2013) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97:7195–7204. doi: 10.1007/s00253-013-5020-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Lee YJ, Jeon Y, Lee JS et al (2007) Enzymatic synthesis of phenolic CoAs using 4-coumarate:coenzyme A ligase (4CL) from rice. Bull Korean Chem Soc 28:365–366. doi: 10.5012/bkcs.2007.28.3.365 CrossRefGoogle Scholar
  18. 18.
    Lin B, Tao Y (2017) Whole-cell biocatalysts by design. Microb Cell Fact 16:106. doi: 10.1186/s12934-017-0724-7 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ly D, Kang K, Choi JY et al (2008) HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11:385–389. doi: 10.1089/jmf.2007.514 CrossRefPubMedGoogle Scholar
  20. 20.
    Macoy DM, Kim WY, Lee SY et al (2015) Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotech Rep 9:269–278. doi: 10.1007/s11816-015-0368-1 CrossRefGoogle Scholar
  21. 21.
    Martin-Tanguy J (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3:381–399. doi: 10.1007/978-94-009-5171-6_16 CrossRefGoogle Scholar
  22. 22.
    Martin-Tanguy J, Cabanne F, Perdrizet E et al (1978) The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17:1927–1928. doi: 10.1016/S0031-9422(00)88735-X CrossRefGoogle Scholar
  23. 23.
    Nair RB, Xia Q, Kartha CJ et al (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydrlxylation. Developmental regulation of gene, and expressing in yeast. Plant Physiol 130:210–220. doi: 10.1104/pp.008649 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pittard AJ, Davidson BE (1991) TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol 5:1585–1592. doi: 10.1111/j.1365-2958.1991.tb01904.x CrossRefPubMedGoogle Scholar
  25. 25.
    Ponchet M, Martin-Tanguy J, Marais A et al (1980) Hydroxycinnamoyl acid amides and aromatic amines in the inflorescences of some araceae species. Phytochemistry 21:2865–2869. doi: 10.1016/0031-9422(80)85057-6 CrossRefGoogle Scholar
  26. 26.
    Ramakrishna A, Giridhar P, Ravishankar GA (2011) Phytoserotonin. Plant Signal Behav 6:800–809. doi: 10.4161/psb.6.6.15242 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Revial G, Jabin I, Lim S, Pfau M (2002) Aromatization of 1,6,7,7a-tetrahydro-2H-indol-2-ones by a novel process. Preparation of key-intermediate methyl 1-benzyl-5-methoxy-1H-indole-3-acetate and the syntheses of serotonin, melatonin, and bufotenin. J Org Chem 67:2252–2256. doi: 10.1021/jo0110597 CrossRefPubMedGoogle Scholar
  28. 28.
    Rodriguez A, Martnez JA, Flores N et al (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13:126. doi: 10.1186/s12934-014-0126-z PubMedPubMedCentralGoogle Scholar
  29. 29.
    Roh JS, Han JY, Kim JH et al (2004) Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 27:1976–1978. doi: 10.1248/bpb.27.1976 CrossRefPubMedGoogle Scholar
  30. 30.
    Rothchild R (2005) Proton and carbon-13 NMR studies of some tryptamines, precursors, and derivatives: Ab initio calculations for optimized structures. Spectrosc Lett 38:521–537. doi: 10.1081/SL-200062932 CrossRefGoogle Scholar
  31. 31.
    Schoch G, Goepfert S, Morant M et al (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J BiolChem 276:36566–36574. doi: 10.1074/jbc.M104047200 Google Scholar
  32. 32.
    Sim GY, Yang SM, Kim BG et al (2015) Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb Cell Fact 14:162. doi: 10.1186/s12934-015-0353-y CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Takii T, Kawashima S, Chiba T et al (2003) Multiple mechanisms involved in the inhibition of proinflammatory cytokine production from human monocytes by N-(p-coumaroyl)serotonin and its derivatives. Int Immunopharmacol 3:273–277. doi: 10.1016/S1567-5769(02)00207-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Takimoto T, Suzuki K, Arisaka H et al (2011) Effect of N-(p-coumaroyl)serotonin and N-feruloylserotonin, major anti-atherogenic polyphenols in safflower seed, on vasodilation, proliferation and migration of vascular smooth muscle cells. Mol Nutr Food Res 55:1561–1571. doi: 10.1002/mnfr.201000545 CrossRefPubMedGoogle Scholar
  35. 35.
    Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi: 10.1093/mp/ssp106 CrossRefPubMedGoogle Scholar
  36. 36.
    Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505. doi: 10.1021/jf990498s CrossRefPubMedGoogle Scholar
  37. 37.
    Yoon J-A, Kim B-G, Lee WJ et al (2012) Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl Environ Microbiol 78:4256–4262. doi: 10.1128/AEM.00275-12 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yuwen L, Zhang FL, Chen QH et al (2013) The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89. Sci Rep 3:1753. doi: 10.1038/srep01753 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  • Su Jin Lee
    • 1
  • Geun-Young Sim
    • 1
  • Youngshim Lee
    • 1
  • Bong-Gyu Kim
    • 1
    • 2
  • Joong-Hoon Ahn
    • 1
    Email author
  1. 1.Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of Forest ResourcesGyeongnam National University of Science and TechnologyJinju-siRepublic of Korea

Personalised recommendations