Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 44, Issue 10, pp 1443–1458 | Cite as

Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius

  • Brady D. LeeEmail author
  • William A. Apel
  • Linda C. DeVeaux
  • Peter P. Sheridan
Bioenergy/Biofuels/Biochemicals - Original Paper

Abstract

Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette-type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in chemostats, followed by attempted induction of CCR with glucose or arabinose. Alicyclobacillus acidocaldarius grew while simultaneously metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating that CCR did not control carbon metabolism. Microarrays showed down-regulation of genes during growth on one sugar compared to two, and occurred primarily in genes encoding: (1) regulators; (2) enzymes for cell wall synthesis; and (3) sugar transporters.

Keywords

Alicyclobacillus acidocaldarius Thermoacidophile Lignocellulose Microarray 

Notes

Acknowledgements

This work was supported by the Idaho National Laboratory’s—Laboratory Directed Research and Development program under the Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517.

Supplementary material

10295_2017_1968_MOESM1_ESM.docx (109 kb)
Supplementary material 1 (DOCX 108 kb)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. 2.
    Bader J, Skelac L, Wewetzer S, Senz M, Popović M, Bajpai R (2012) Effect of partial pressure of CO2 on the production of thermostable α-amylase and neutral protease by Bacillus caldolyticus. Appl Biochem Microbiol 48:182–187. doi: 10.1134/s0003683812020032 CrossRefGoogle Scholar
  3. 3.
    Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193. doi: 10.1093/bioinformatics/19.2.185 CrossRefPubMedGoogle Scholar
  4. 4.
    Bush M, Dixon R (2012) the role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 76:497–529. doi: 10.1128/mmbr.00006-12 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H-P, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the crenarchaeota. J Bacteriol 187:4992–4999. doi: 10.1128/jb.187.14.4992-4999.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chhabra SR, Shockley KR, Ward DE, Kelly RM (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68:545–554CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chirakkal H, O’Rourke M, Atrih A, Foster SJ, Moir A (2002) Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–2392CrossRefPubMedGoogle Scholar
  8. 8.
    Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cook GM, Janssen PH, Morgan HW (1993) Simultaneous uptake and utilisation of glucose and xylose by Clostridium thermohydrosulfuricum. FEMS Microbiol Lett 109:55–61CrossRefGoogle Scholar
  10. 10.
    Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875. doi: 10.1074/jbc.M505556200 CrossRefPubMedGoogle Scholar
  11. 11.
    Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93CrossRefPubMedGoogle Scholar
  12. 12.
    Di Lauro B, Strazzulli A, Perugino G, La Cara F, Bedini E, Corsaro MM, Rossi M, Moracci M (2008) Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochim Biophys Acta (BBA) Proteins Proteomics 1784:292–301. doi: 10.1016/j.bbapap.2007.10.013 CrossRefGoogle Scholar
  13. 13.
    DiLauro B, Rossi M, Moracci M (2006) Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10:301–310CrossRefGoogle Scholar
  14. 14.
    Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602CrossRefPubMedGoogle Scholar
  15. 15.
    Eckert K, Vigouroux A, Lo Leggio L, Moréra S (2009) Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong-1 and -2 subsites mimic cellobiohydrolase activity. J Mol Biol 394:61–70. doi: 10.1016/j.jmb.2009.08.060 CrossRefPubMedGoogle Scholar
  16. 16.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  17. 17.
    Elferink MGL, Albers S-V, Konings WN, Driessen AJM (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503. doi: 10.1046/j.1365-2958.2001.02336.x CrossRefPubMedGoogle Scholar
  18. 18.
    Erbeznik M, Hudson SE, Herrman AB, Strobel HJ (2004) Molecular analysis of the xylFGH operon, coding for xylose ABC transport, in Thermoanaerobacter ethanolicus. Curr Microbiol 48:295–299. doi: 10.1007/s00284-003-4202-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Eriksen N, Riis M, Holm N, Iversen N (2011) H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300. doi: 10.1007/s10529-010-0439-x CrossRefPubMedGoogle Scholar
  20. 20.
    Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen R (2011) Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 12:385CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frock AD, Gray SR, Kelly RM (2012) Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 78:1978–1986. doi: 10.1128/aem.07069-11 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghosh T, Bose D, Zhang X (2010) Mechanisms for activating bacterial RNA polymerase. FEMS Microbiol Rev 34:611–627. doi: 10.1111/j.1574-6976.2010.00239.x CrossRefPubMedGoogle Scholar
  23. 23.
    Goto K, Mochida K, Asahara M, Suzuki M, Yokota A (2002) Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48:243–250CrossRefPubMedGoogle Scholar
  24. 24.
    Gouws PA, Gie L, Pretorius A, Dhansay N (2005) Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. Int J Food Sci Technol 40:789–792. doi: 10.1111/j.1365-2621.2005.01006.x CrossRefGoogle Scholar
  25. 25.
    Groenewald WH, Gouws PA, Witthuhn RC (2008) Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa. Extremophiles 12:159–163CrossRefPubMedGoogle Scholar
  26. 26.
    Han SO, Yukawa H, Inui M, Doi RH (2003) Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J Bacteriol 185:6067–6075CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Herrera-Herrera J, Pérez-Avalos O, Salgado L, Ponce-Noyola T (2009) Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse. Arch Microbiol 191:745–750CrossRefPubMedGoogle Scholar
  28. 28.
    Ibarra J, Pérez-Rueda E, Segovia L, Puente J (2008) The DNA-binding domain as a functional indicator: the case of the AraC/XylS family of transcription factors. Genetica 133:65–76. doi: 10.1007/s10709-007-9185-y CrossRefPubMedGoogle Scholar
  29. 29.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264. doi: 10.1093/biostatistics/4.2.249 CrossRefPubMedGoogle Scholar
  30. 30.
    Joshua CJ, Dahl R, Benke PI, Keasling JD (2011) Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J Bacteriol 193:1293–1301. doi: 10.1128/jb.01219-10 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kawano S, Tajima K, Kono H, Numata Y, Yamashita H, Satoh Y, Munekata M (2008) Regulation of endoglucanase gene (cmcax) expression in Acetobacter xylinum. J Biosci Bioeng 106:88–94CrossRefPubMedGoogle Scholar
  32. 32.
    Kim J-H, Block D, Mills D (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88:1077–1085. doi: 10.1007/s00253-010-2839-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Koivula Y, Hemila H, Pakkanen R, Sibakov M, Palva I (1993) Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius. J Gen Microbiol 139:2399–2407. doi: 10.1099/00221287-139-10-2399 CrossRefPubMedGoogle Scholar
  34. 34.
    Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J (2011) The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genet 7:e1002318. doi: 10.1371/journal.pgen.1002318 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lulko AT, Buist G, Kok J, Kuipers OP (2007) Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol 12:82–95CrossRefPubMedGoogle Scholar
  36. 36.
    Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, Liolios K, Pagani I, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129. doi: 10.1093/nar/gkr975 CrossRefPubMedGoogle Scholar
  37. 37.
    Matzke J, Herrmann A, Schneider E, Bakker EP (2000) Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiol Lett 183:55–61CrossRefPubMedGoogle Scholar
  38. 38.
    Mavromatis K, Sikorski J, Lapidus A, Rio TGD, Copeland A, Tice H, Cheng J-F, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Meincke L, Sims D, Chertkov O, Han C, Brettin T, Detter JC, Wahrenburg C, Rohde M, Pukall R, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2010) Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IAT). Stand Genom Sci 2:9–18CrossRefGoogle Scholar
  39. 39.
    Monnet V (2003) Bacterial oligopeptide-binding proteins. Cell Mol Life Sci CMLS 60:2100–2114. doi: 10.1007/s00018-003-3054-3 CrossRefPubMedGoogle Scholar
  40. 40.
    Moore BS, Poralla K, Floss HG (1993) Biosynthesis of the cyclohexanecarboxylic acid starter unit of ω-cyclohexyl fatty acids in Alicyclobacillus acidocaldarius. J Am Chem Soc 115:5267–5274. doi: 10.1021/ja00065a043 CrossRefGoogle Scholar
  41. 41.
    Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, Cara FL (2008) A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Protein Pept Lett 15:1017–1021. doi: 10.2174/092986608785849209 CrossRefPubMedGoogle Scholar
  42. 42.
    Nanavati DM, Thirangoon K, Noll KM (2006) Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 72:1336–1345. doi: 10.1128/aem.72.2.1336-1345.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nguyen T-AD, Kim K-R, Kim MS, Sim SJ (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35:13392–13398. doi: 10.1016/j.ijhydene.2009.11.112 CrossRefGoogle Scholar
  44. 44.
    Nicholas K, Nicholas H Jr, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:370Google Scholar
  45. 45.
    Nicolaus B, Improta R, Manca MC, Lama L, Esposito E, Gambacorta A (1998) Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 19:133–141. doi: 10.1007/s003000050224 CrossRefGoogle Scholar
  46. 46.
    Ordoñez R, Morlon-Guyot J, Gasparian S, Guyot J (1998) Occurrence of a thermoacidophilic cell-bound exo-pectinase in Alicyclobacillus acidocaldarius. Folia Microbiol 43:657–660. doi: 10.1007/bf02816385 CrossRefGoogle Scholar
  47. 47.
    Phi Q, Oh S-H, Park Y-M, Park S-H, Ryu C-M, Ghim S-Y (2008) Isolation and characterization of transposon-insertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr Microbiol 56:524–530. doi: 10.1007/s00284-008-9118-8 CrossRefPubMedGoogle Scholar
  48. 48.
    Robellet X, Flipphi M, Pégot S, Maccabe AP, Vélot C (2008) AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochem J 412:485–493CrossRefPubMedGoogle Scholar
  49. 49.
    Rodionov DA, Mironov AA, Gelfand MS (2001) Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205:305–314CrossRefPubMedGoogle Scholar
  50. 50.
    Rodionova IA, Yang C, Li X, Kurnasov OV, Best AA, Osterman AL, Rodionov DA (2012) Diversity and versatility of the Thermotoga maritima sugar kinome. J Bacteriol 194:5552–5563. doi: 10.1128/jb.01136-12 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rovio S, Simolin H, Koljonen K, Sirén H (2008) Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr 1185:139–144. doi: 10.1016/j.chroma.2008.01.031 CrossRefGoogle Scholar
  52. 52.
    Saier MH (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120PubMedPubMedCentralGoogle Scholar
  53. 53.
    Satheesh kumar G, Chandra M, Mallaiah K, Sreenivasulu P, Choi Y-L (2010) Purification and characterization of highly thermostable α-amylase from thermophilic Alicyclobacillus acidocaldarius. Biotechnol Bioprocess Eng 15:435–440. doi: 10.1007/s12257-009-0072-5 CrossRefGoogle Scholar
  54. 54.
    Schneider E (2001) ABC transporters catalyzing carbohydrate uptake. Res Microbiol 152:303–310. doi: 10.1016/S0923-2508(01)01201-3 CrossRefPubMedGoogle Scholar
  55. 55.
    She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC-Y, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci 98:7835–7840. doi: 10.1073/pnas.141222098 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shingler V (2011) Signal sensory systems that impact σ54-dependent transcription. FEMS Microbiol Rev 35:425–440. doi: 10.1111/j.1574-6976.2010.00255.x CrossRefPubMedGoogle Scholar
  57. 57.
    Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y (2007) A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 73:874–884. doi: 10.1128/aem.02367-06 CrossRefPubMedGoogle Scholar
  58. 58.
    Strobel HJ (1994) Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens. FEMS Microbiol Lett 122:217–222CrossRefPubMedGoogle Scholar
  59. 59.
    Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880CrossRefPubMedGoogle Scholar
  60. 60.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vinuselvi P, Lee SK (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb Technol 50:1–4. doi: 10.1016/j.enzmictec.2011.10.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Wisotzkey J, Peter Jurtshuk JR, Fox G, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269CrossRefPubMedGoogle Scholar
  63. 63.
    Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77:7886–7895. doi: 10.1128/aem.00644-11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology (outside the USA) 2017

Authors and Affiliations

  1. 1.Idaho National LaboratoryBiological Systems DepartmentIdaho FallsUSA
  2. 2.Department of Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA
  3. 3.Department of Biological SciencesIdaho State UniversityPocatelloUSA
  4. 4.Pacific Northwest National LaboratoryEnergy and Environment DirectorateRichlandUSA
  5. 5.Aspenglow Associates, LLCJacksonUSA

Personalised recommendations