Skip to main content
Log in

Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Althuluth M, Mota-Martinez MT, Berrouk A, Kroon MC, Peters CJ (2014) Removal of small hydrocarbons (ethane, propane, butane) from natural gas streams using the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate. J Supercrit Fluids 90:65–72

    Article  CAS  Google Scholar 

  2. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121

    Article  CAS  Google Scholar 

  3. Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiol 130:3327–3333

    Article  CAS  Google Scholar 

  4. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nat 510:148–151

    Article  CAS  Google Scholar 

  5. Elliott SJ, Zhu M, Tso L, Nguyen HHT, Yip JHK, Chan SI (1997) Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955

    Article  CAS  Google Scholar 

  6. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603

    Article  CAS  Google Scholar 

  7. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou CT, Patel RN, Laskin AI, Barnabe N, Marczak I (1979) Identification and purification of a nicotinamide adenine dinucleotide-dependent secondary alcohol dehydrogenase from C1-utilizing microbes. FEBS Lett 101:179–183

    Article  CAS  PubMed  Google Scholar 

  9. Hur DH, Na JG, Lee EY (2016) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH‐1 newly isolated from brewery waste sludge. J Chem Technol Biotechnol. doi:10.1002/jctb.5007

    Google Scholar 

  10. Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380

    Article  CAS  PubMed  Google Scholar 

  11. Itoh S, Kawakami H, Fukuzumi S (1998) Model studies on calcium-containing quinoprotein alcohol dehydrogenases. catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-Dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic Acid). Biochemistry 37:6562–6571

    Article  CAS  PubMed  Google Scholar 

  12. Itoh S, Kawakami H, Fukuzumi S (1997) Modeling of the chemistry of quinoprotein methanol dehydrogenase. oxidation of methanol by calcium complex of coenzyme PQQ via addition–elimination mechanism. J Am Chem Soc 119:439–440

    Article  CAS  Google Scholar 

  13. Kang TJ, Lee EY (2016) Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J Ind Eng Chem 35:8–13

    Article  CAS  Google Scholar 

  14. Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. Faseb J 6:724–730

    CAS  PubMed  Google Scholar 

  15. Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192

    Article  CAS  PubMed  Google Scholar 

  16. Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Kwon HT, Choi KH, Lim W, Cho JH, Tak K, Moon I (2011) LNG: an eco-friendly cryogenic fuel for sustainable development. Appl Energy 88:4264–4273

    Article  CAS  Google Scholar 

  18. Miyazaki SS, Izumi Y, Yamada H (1987) Purification and characterization of methanol dehydrogenase of a serine-producing methylotroph, Hyphomicrobium methylovorum. J Ferment Bioeng 65:371–377

    Article  CAS  Google Scholar 

  19. NGVAMERICA (2014) A comparison of compressed natural gas and propane. http://www.ngvamerica.org/pdfs/CNG_LPG_4.23.14.pdf. Accessed 26 Dec 2016

  20. Patel RN, Hou CT, Laskin AI, Felix A (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44:1130–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel SK, Mardina P, Kim SY, Lee JK, Kim IW (2016) Biological methanol production by a type ii methanotroph Methylocystis bryophila. J Microbiol Biotechnol. doi:10.4014/jmb.1601.01013

    Google Scholar 

  22. Patel SK, Selvaraj C, Mardina P, Jeong JH, Kalia VC, Kang YC, Lee JK (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391

    Article  CAS  Google Scholar 

  23. Sifniades S, Levy AB, Bahl H (2010) Acetone. Ullmann’s encyclopedia of industrial chemistry. doi:10.1002/14356007.a01_079.pub2

    Google Scholar 

  24. Stephens GM, Dalton H (1986) The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria Microbiol 132:2453–2462

    CAS  Google Scholar 

  25. US Department of Energy (2015) CLEAN CITIES alternative fuel price report. http://www.afdc.energy.gov/uploads/publication/alternative_fuel_price_report_october_2015.pdf. Accessed 26 Dec 2016

  26. Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  27. Vanderberg LA, Perry JJ (1994) Dehalogenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase. Can J Microbiol 40:169–172

    Article  CAS  PubMed  Google Scholar 

  28. Weiner ML, Kotkoskie LA (1999) Excipient toxicity and safety. Marcel Dekker, New York

Download references

Acknowledgements

This research was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015M3D3A1A01064882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, D.H., Nguyen, T.T., Kim, D. et al. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1. J Ind Microbiol Biotechnol 44, 1097–1105 (2017). https://doi.org/10.1007/s10295-017-1936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1936-x

Keywords

Navigation