Advertisement

Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions

  • Alvaro Díaz-BarreraEmail author
  • Nataly Maturana
  • Ivette Pacheco-Leyva
  • Irene Martínez
  • Claudia Altamirano
Fermentation, Cell Culture and Bioengineering - Original Paper

Abstract

Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate \((q_{{{\text{O}}_{ 2} }} )\) from 10.9 to 45.3 mmol g−1 h−1 by changes in the dilution rate (D) from 0.06 to 0.10 h−1, whereas under 1% DOT the \(q_{{{\text{O}}_{ 2} }}\) was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.

Keywords

Alginate Continuous culture Oxygen control Gene expression 

Notes

Acknowledgements

We acknowledge the financial support from CONICYT-Chile (Project PCCI40039). The technical assistance of Luisa Vásquez in HPLC analysis is also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefPubMedGoogle Scholar
  2. 2.
    Castillo T, Heinzle E, Peifer S, Schneider K, Peña C (2013) Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii. Process Biochem 48:995–1003CrossRefGoogle Scholar
  3. 3.
    Castillo T, Galindo E, Peña C (2013) The acetylation degree of alginates in Azotobacter vinelandii ATCC9046 is determined by dissolved oxygen and specific growth rate: studies in glucose-limited chemostat cultivations. J Ind Microbiol Biotechnol 40:715–723CrossRefPubMedGoogle Scholar
  4. 4.
    Díaz-Barrera A, Silva P, Avalos R, Acevedo F (2009) Alginate molecular mass produced by Azotobacter vinelandii in response to changes of the O2 transfer rate in chemostat cultures. Biotechnol Lett 31:825–829CrossRefPubMedGoogle Scholar
  5. 5.
    Díaz-Barrera A, Silva P, Berrios J, Acevedo F (2010) Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures. Bioresour Technol 101:9405–9408CrossRefPubMedGoogle Scholar
  6. 6.
    Díaz-Barrera A, Aguirre A, Berrios J, Acevedo F (2011) Continuous cultures for alginate production by Azotobacter vinelandii growing at different oxygen uptake rates. Process Biochem 46:1879–1883CrossRefGoogle Scholar
  7. 7.
    Díaz-Barrera A, Soto E, Altamirano C (2012) Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. J Ind Microbiol Biotechnol 39:613–621CrossRefPubMedGoogle Scholar
  8. 8.
    Díaz-Barrera A, Martínez F, Guevara Pezoa F, Acevedo F (2014) Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii. PLoS One 9(8):e105993. doi: 10.1371/journal.pone.0105993 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ertesvåg H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6:523. doi: 10.3389/fmicb.2015.00523 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Fata Moradali M, Donati I, Sims IM, Ghods S, Rehm BHA (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. Mbio 6(3):e00453–e00515. doi: 10.1128/mBio.00453-15 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Flores C, Moreno S, Espín G, Peña C, Galindo E (2013) Expression of alginases and alginate polymerase genes in response to oxygen, and their relationship with the alginate molecular weight in Azotobacter vinelandii. Enzyme Microb Technol 53:85–91CrossRefPubMedGoogle Scholar
  12. 12.
    Flores C, Díaz-Barrera A, Martínez F, Galindo E, Peña C (2015) Role of oxygen in the polymerization and de-polymerization of alginate produced by Azotobacter vinelandii. J Chem Technol Biotechnol 90:356–365CrossRefGoogle Scholar
  13. 13.
    Gimmestad M, Ertesvåg H, Heggeset T, Aarstad O, Svanem B, Valla S (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191:4845–4853CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gómez-Pazarín K, Flores C, Castillo T, Büchs J, Galindo E, Peña C (2016) Molecular weight and viscosifying power of alginates produced in Azotobacter vinelandii cultures in shake flasks under low power input. J Chem Technol Biotechnol 91:1485–1492CrossRefGoogle Scholar
  15. 15.
    Hay I, Rehman Z, Moradali F, Wang Y, Rehm BHA (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650PubMedPubMedCentralGoogle Scholar
  16. 16.
    Jiménez L, Castillo T, Flores C, Segura D, Galindo E, Peña C (2016) Analysis of respiratory activity and carbon usage of a mutant of Azotobacter vinelandii impaired in poly-β-hydroxybutyrate synthesis. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-016-1774-2 Google Scholar
  17. 17.
    Jin P, Kang Z, Yuan P, Du G, Chen J (2016) Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 35:21–30CrossRefPubMedGoogle Scholar
  18. 18.
    Lozano E, Galindo E, Peña C (2011) Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions. Microb Cell Fact 10(1):13CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Manchak J, Page WJ (1994) Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140:953–963CrossRefGoogle Scholar
  20. 20.
    Moral Kvılcımdan Ç, Sanin F (2012) An investigation of agitation speed as a factor affecting the quantity and monomer distribution of alginate from Azotobacter vinelandii ATCC®9046. J Ind Microbiol Biotechnol 39:513–519CrossRefGoogle Scholar
  21. 21.
    Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 24:321–333CrossRefPubMedGoogle Scholar
  22. 22.
    Pacheco-Leyva I, Guevara Pezoa F, Díaz-Barrera A (2016) Alginate biosynthesis in Azotobacter vinelandii: overview of molecular mechanisms in connection with the oxygen availability. Int J Polym Sci 2016:1–12. doi: 10.1155/2016/2062360 CrossRefGoogle Scholar
  23. 23.
    Peña C, Trujillo-Roldán M, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microbiol Technol 27:390–398CrossRefGoogle Scholar
  24. 24.
    Peña C, Peter CP, Büchs J, Galindo E (2007) Evolution of the specific power consumption and oxygen transfer rate in alginate-producing cultures of Azotobacter vinelandii conducted in shake flasks. Biochem Eng J 36:73–80CrossRefGoogle Scholar
  25. 25.
    Peña C, Millán M, Galindo E (2008) Production of alginate by Azotobacter vinelandii in a stirred fermentor simulating the evolution of power input observed in shake flasks. Process Biochem 43:775–778CrossRefGoogle Scholar
  26. 26.
    Priego-Jimenéz R, Peña C, Ramirez OT, Galindo E (2005) Specific growth rate determines the molecular mass of the alginate produced by Azotobacter vinelandii. Biochem Eng J 25:187–193CrossRefGoogle Scholar
  27. 27.
    Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Trujillo-Roldán M, Moreno S, Espín G, Galindo E (2004) Roles of the oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63:742–747CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu P, Dong S, Li S, Xu X, Xu H (2014) Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochem Eng J 90:264–271CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  1. 1.Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.i3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  3. 3.Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
  4. 4.CREAS CONICYT Regional GORE Valparaíso R0GI1004CuraumaChile

Personalised recommendations