Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics

  • Arpan A. Bandyopadhyay
  • Anurag Khetan
  • Li-Hong Malmberg
  • Weichang Zhou
  • Wei-Shou Hu
Fermentation, Cell Culture and Bioengineering - Review

Abstract

The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.

Keywords

Natural products Protein biologics Process technology 

References

  1. 1.
  2. 2.
    Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, Shukla AA (2010) Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng 106:894–905. doi:10.1002/bit.22764 CrossRefPubMedGoogle Scholar
  3. 3.
    Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214. doi:10.1111/j.1574-6976.2005.00009.x CrossRefPubMedGoogle Scholar
  4. 4.
    Agarabi CD, Chavez BK, Lute SC, Read EK, Rogstad S, Awotwe-Otoo D, Brown MR, Boyne MT 2nd, Brorson KA (2016) Exploring the linkage between cell culture process parameters and downstream processing utilizing a plackett-burman design for a model monoclonal antibody. Biotechnol Prog. doi:10.1002/btpr.2402 Google Scholar
  5. 5.
    Aigle B, Corre C (2012) Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 517:343–366. doi:10.1016/B978-0-12-404634-4.00017-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet JL (2014) Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 41:251–263. doi:10.1007/s10295-013-1379-y CrossRefPubMedGoogle Scholar
  7. 7.
    Amano SI, Sakurai T, Endo K, Takano H, Beppu T, Furihata K, Sakuda S, Ueda K (2011) A cryptic antibiotic triggered by monensin. J Antibiot (Tokyo) 64:703. doi:10.1038/ja.2011.69 CrossRefGoogle Scholar
  8. 8.
    Anderson EW, Lau EF (1955) Commercial extraction of unfiltered fermentation broth in the podbielniak contactor. Chem Eng Prog 51:7Google Scholar
  9. 9.
    Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38:657–666CrossRefPubMedGoogle Scholar
  10. 10.
    Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772. doi:10.1007/s10295-010-0730-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Carlage T, Hincapie M, Zang L, Lyubarskaya Y, Madden H, Mhatre R, Hancock WS (2009) Proteomic profiling of a high-producing Chinese hamster ovary cell culture. Anal Chem 81:7357–7362. doi:10.1021/ac900792z CrossRefPubMedGoogle Scholar
  12. 12.
    Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41:219–232. doi:10.1007/s10295-013-1383-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Chandra S, Groener A, Feldman F (2002) Effectiveness of alternative treatments for reducing potential viral contaminants from plasma-derived products. Thromb Res 105:391–400CrossRefPubMedGoogle Scholar
  14. 14.
    Chen J, Bergevin J, Kiss R, Walker G, Battistoni T, Lufburrow P, Lam H, Vinther A (2012) Case study: a novel bacterial contamination in cell culture production-leptospira licerasiae. PDA J Pharm Sci Technol 66:580–591. doi:10.5731/pdajpst.2012.00892 CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596. doi:10.1128/JB.00592-08 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Choi SS, Rhee WJ, Kim EJ, Park TH (2006) Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using 30Kc6 gene. Biotechnol Bioeng 95:459–467. doi:10.1002/bit.21023 CrossRefPubMedGoogle Scholar
  17. 17.
    Chong WP, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, Ho YS (2010) Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II. J Biotechnol 147:116–121. doi:10.1016/j.jbiotec.2010.03.018 CrossRefPubMedGoogle Scholar
  18. 18.
    Cipriano D, Burnham M, Hughes JV (2012) Effectiveness of various processing steps for viral clearance of therapeutic proteins: database analyses of commonly used steps. In: Voynov V, Caravella AJ (eds) Therapeutic proteins: methods and protocols. Humana Press, Totowa, NJ, pp 277–292CrossRefGoogle Scholar
  19. 19.
    Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. doi:10.1021/sb500351f CrossRefPubMedGoogle Scholar
  20. 20.
    Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cruz AJG, Silva AS, Araujo MLGC, Giordano RC, Hokka CO (1999) Modelling and optimization of the cephalosporin C production bioprocess in a fed-batch bioreactor with invert sugar as substrate. Chem Eng Sci 54:3137–3142. doi:10.1016/S0009-2509(98)00364-9 CrossRefGoogle Scholar
  22. 22.
    Demain AL (1989) Carbon source regulation of idiolite biosynthesis in actinomycetes. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41:185–201. doi:10.1007/s10295-013-1325-z CrossRefPubMedGoogle Scholar
  24. 24.
    Demain AL, Adrio JL (2008) Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Progress in drug research Fortschritte der Arzneimittelforschung Progrès des recherches pharmaceutiques 65:89. doi:10.1007/978-3-7643-8117-2_7 Google Scholar
  25. 25.
    Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ (2009) Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Biotechnol Bioeng 103:592–608. doi:10.1002/bit.22269 CrossRefPubMedGoogle Scholar
  26. 26.
    Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392. doi:10.1007/s00253-003-1274-y CrossRefPubMedGoogle Scholar
  27. 27.
    Gallo G, Renzone G, Alduina R, Stegmann E, Weber T, Lantz AE, Thykaer J, Sangiorgi F, Scaloni A, Puglia AM (2010) Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina. Proteomics 10:1336–1358. doi:10.1002/pmic.200900175 CrossRefPubMedGoogle Scholar
  28. 28.
    Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol Microbiol 6:2019–2029CrossRefPubMedGoogle Scholar
  29. 29.
    Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300. doi:10.1016/B978-0-12-404634-4.00014-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Hartman TE, Sar N, Genereux K, Barritt DS, He Y, Burky JE, Wesson MC, Tso JY, Tsurushita N, Zhou W et al (2007) Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies. Biotechnol Bioeng 96:294–306. doi:10.1002/bit.21099 CrossRefPubMedGoogle Scholar
  31. 31.
    Hauser H (2015) Cell line development. In: Al-Rubeai M (ed) Animal cell culture. Springer International Publishing, Cham, pp 1–25Google Scholar
  32. 32.
    Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss HG, Omura S (1985) Production of hybrid antibiotics by genetic-engineering. Nature 314:642–644CrossRefPubMedGoogle Scholar
  33. 33.
    Hossler P, Mulukutla BC, Hu WS (2007) Systems analysis of N-glycan processing in mammalian cells. PLoS One 2:e713. doi:10.1371/journal.pone.0000713 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231–243. doi:10.1093/abbs/gmv007 CrossRefGoogle Scholar
  35. 35.
    Hwang YS, Kim ES, Biro S, Choi CY (2003) Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 69:1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Irani N, Wirth M, van Den Heuvel J, Wagner R (1999) Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66:238–246CrossRefPubMedGoogle Scholar
  37. 37.
    Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30:356–362. doi:10.1016/j.tips.2009.04.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Ju KS, Gao J, Doroghazi JR, Wang KK, Thibodeaux CJ, Li S, Metzger E, Fudala J, Su J, Zhang JK et al (2015) Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci USA 112:12175–12180. doi:10.1073/pnas.1500873112 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372CrossRefPubMedGoogle Scholar
  40. 40.
    Khetan A, Huang YM, Dolnikova J, Pederson NE, Wen DY, Yusuf-Makagiansar H, Chen P, Ryll T (2010) Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107:116–123CrossRefPubMedGoogle Scholar
  41. 41.
    Kim M, Yi JS, Lakshmanan M, Lee DY, Kim BG (2016) Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor. Biotechnol Bioeng 113:651–660. doi:10.1002/bit.25830 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim SH, Lee GM (2007) Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Appl Microbiol Biotechnol 74:152–159. doi:10.1007/s00253-006-0654-5 CrossRefPubMedGoogle Scholar
  43. 43.
    Kim SH, Lee GM (2007) Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76:659–665. doi:10.1007/s00253-007-1041-6 CrossRefPubMedGoogle Scholar
  44. 44.
    Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651. doi:10.1073/pnas.0914833107 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Krampe B, Al-Rubeai M (2010) Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 62:175–188. doi:10.1007/s10616-010-9274-0 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kyung YS, Peshwa MV, Gryte DM, Hu WS (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14:183–190CrossRefPubMedGoogle Scholar
  47. 47.
    Lee J, Hwang Y, Kim S, Kim E, Choi C (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J Biosci Bioeng 89:606–608CrossRefPubMedGoogle Scholar
  48. 48.
    Lombo F, Brana AF, Mendez C, Salas JA (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181:642–647PubMedPubMedCentralGoogle Scholar
  49. 49.
    Malmberg LH, Hu WS, Sherman DH (1995) Effects of enhanced lysine epsilon-aminotransferase activity on cephamycin biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 44:198–205CrossRefPubMedGoogle Scholar
  50. 50.
    Marks L (2012) The birth pangs of monoclonal antibody therapeutics: the failure and legacy of Centoxin. MAbs 4:403–412. doi:10.4161/mabs.19909 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moore JM, Bradshaw E, Seipke RF, Hutchings MI, McArthur M (2012) Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol 517:367–385. doi:10.1016/B978-0-12-404634-4.00018-8 CrossRefPubMedGoogle Scholar
  52. 52.
    Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88:901–908. doi:10.1002/bit.20326 CrossRefPubMedGoogle Scholar
  53. 53.
    Mou DG, Cooney CL (1983) Growth monitoring and control through computer-aided on-line mass balancing in a fed-batch penicillin fermentation. Biotechnol Bioeng 25:225–255. doi:10.1002/bit.260250118 CrossRefPubMedGoogle Scholar
  54. 54.
    Murphy M, Quesada GM, Chen DY (2011) Effectiveness of mouse minute virus inactivation by high temperature short time treatment technology: a statistical assessment. Biologicals 39:438–443CrossRefPubMedGoogle Scholar
  55. 55.
    Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52CrossRefGoogle Scholar
  56. 56.
    Ochi K, Tanaka Y, Tojo S (2014) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol 41:403–414. doi:10.1007/s10295-013-1349-4 CrossRefPubMedGoogle Scholar
  57. 57.
    Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol. doi:10.1007/s002530000403 PubMedGoogle Scholar
  58. 58.
    Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21:204–207CrossRefPubMedGoogle Scholar
  59. 59.
    Quan C, Alcala E, Petkovska I, Matthews D, Canova-Davis E, Taticek R, Ma S (2008) A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior. Anal Biochem 373:179–191. doi:10.1016/j.ab.2007.09.027 CrossRefPubMedGoogle Scholar
  60. 60.
    Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27:26–34. doi:10.1038/nbt0109-26 CrossRefPubMedGoogle Scholar
  61. 61.
    Reeves CD (2003) The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 23:95–147. doi:10.1080/713609311 CrossRefPubMedGoogle Scholar
  62. 62.
    Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580CrossRefPubMedGoogle Scholar
  63. 63.
    Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139. doi:10.1128/AEM.01308-06 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sanfeliu A, Paredes C, Cairo JJ, Godia F (1997) Identification of key patterns in the metabolism of hybridoma cells in culture. Enzyme Microb Technol 21:421–428CrossRefGoogle Scholar
  65. 65.
    Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133. doi:10.1021/bp049780w CrossRefPubMedGoogle Scholar
  66. 66.
    Schleh M, Romanowski P, Bhebe P, Zhang L, Chinniah S, Lawrence B, Bashiri H, Gaduh A, Rajurs V, Rasmussen B et al (2009) Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types. Biotechnol Prog 25:854–860. doi:10.1002/btpr.181 CrossRefPubMedGoogle Scholar
  67. 67.
    Seth G, Charaniya S, Wiaschin KF, Hu WS (2007) In pursuit of a super producer—alternative paths to high producing recombinant mammalian cells. Curr Opin Biotechnol 18:557–564CrossRefPubMedGoogle Scholar
  68. 68.
    Seth G, Hossler P, Yee JC, Hu WS (2006) Engineering cells for cell culture bioprocessing—physiological fundamentals. Adv Biochem Eng Biotechnol 101:119–164PubMedGoogle Scholar
  69. 69.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. doi:10.1074/jbc.M202069200 CrossRefPubMedGoogle Scholar
  70. 70.
    Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664. doi:10.1128/EC.00186-07 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158. doi:10.1023/A:1008025016272 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Nat Biotech 7:477–485CrossRefGoogle Scholar
  73. 73.
    Smanski MJ, Peterson RM, Rajski SR, Shen B (2009) Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob Agents Chemother 53:1299–1304. doi:10.1128/AAC.01358-08 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D (2015) Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 195:15–29. doi:10.1016/j.jbiotec.2014.12.009 CrossRefPubMedGoogle Scholar
  75. 75.
    Staunton J, Wilkinson B (2001) Combinatorial biosynthesis of polyketides and nonribosomal peptides. Curr Opin Chem Biol 5:159–164CrossRefPubMedGoogle Scholar
  76. 76.
    Stratigopoulos G, Bate N, Cundliffe E (2004) Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54:1326–1334. doi:10.1111/j.1365-2958.2004.04347.x CrossRefPubMedGoogle Scholar
  77. 77.
    Sung BH, Lee JH, Kim SC (2009) Escherichia coli genome engineering and minimization for the construction of a bioengine. In: Lee SY (ed) Systems biology and biotechnology of Escherichia coli. Springer, Netherlands, City, pp 19–40CrossRefGoogle Scholar
  78. 78.
    Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. doi:10.1021/acssynbio.5b00038 CrossRefPubMedGoogle Scholar
  79. 79.
    Vishwanathan N, Le H, Jacob NM, Tsao YS, Ng SW, Loo B, Liu Z, Kantardjieff A, Hu WS (2014) Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnol Bioeng 111:518–528. doi:10.1002/bit.25117 CrossRefPubMedGoogle Scholar
  80. 80.
    Volokhan O, Sletta H, Sekurova ON, Ellingsen TE, Zotchev SB (2005) An unexpected role for the putative 4′-phosphopantetheinyl transferase-encoding gene nysF in the regulation of nystatin biosynthesis in Streptomyces noursei ATCC 11455. FEMS Microbiol Lett 249:57–64. doi:10.1016/j.femsle.2005.05.052 CrossRefPubMedGoogle Scholar
  81. 81.
    von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20:1607–1618. doi:10.1093/glycob/cwq109 CrossRefGoogle Scholar
  82. 82.
    Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, Powell DR, Cichewicz RH (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948. doi:10.1021/np100142h CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B et al (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109:3018–3029. doi:10.1002/bit.24584 CrossRefPubMedGoogle Scholar
  84. 84.
    Wen DY, Vecchi MM, Gu S, Su LH, Dolnikova J, Huang YM, Foley SF, Garber E, Pederson N, Meier W (2009) Discovery and investigation of misincorporation of serine at asparagine positions in recombinant proteins expressed in chinese hamster ovary cells. J Biol Chem 284:32686–32694CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wilkens CA, Altamirano C, Gerdtzen ZP (2011) Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnol Bioproc E 16:714–724CrossRefGoogle Scholar
  86. 86.
    Wu C, Du C, Gubbens J, Choi YH, van Wezel GP (2015) Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28. J Nat Prod 78:2355–2363. doi:10.1021/acs.jnatprod.5b00276 CrossRefPubMedGoogle Scholar
  87. 87.
    Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622. doi:10.1002/bit.20151 CrossRefPubMedGoogle Scholar
  88. 88.
    Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103:9661–9666. doi:10.1073/pnas.0603251103 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yongky A, Lee J, Le T, Mulukutla BC, Daoutidis P, Hu WS (2015) Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells. Biotechnol Bioeng 112:1437–1445. doi:10.1002/bit.25566 CrossRefPubMedGoogle Scholar
  90. 90.
    Yoo YJ, Hwang JY, Shin HL, Cui H, Lee J, Yoon YJ (2015) Characterization of negative regulatory genes for the biosynthesis of rapamycin in Streptomyces rapamycinicus and its application for improved production. J Ind Microbiol Biotechnol 42:125–135. doi:10.1007/s10295-014-1546-9 CrossRefPubMedGoogle Scholar
  91. 91.
    Zabala D, Brana AF, Florez AB, Salas JA, Mendez C (2013) Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20:187–197. doi:10.1016/j.ymben.2013.10.002 CrossRefPubMedGoogle Scholar
  92. 92.
    Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198. doi:10.1016/j.ymben.2009.01.005 CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang L, Inniss MC, Han S, Moffat M, Jones H, Zhang B, Cox WL, Rance JR, Young RJ (2015) Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 31:1645–1656. doi:10.1002/btpr.2175 CrossRefPubMedGoogle Scholar
  94. 94.
    Zhang XQ, Lok SHL, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. BBA Gen Subj 1425:441–452CrossRefGoogle Scholar
  95. 95.
    Zhou M, Crawford Y, Ng D, Tung J, Pynn AF, Meier A, Yuk IH, Vijayasankaran N, Leach K, Joly J et al (2011) Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J Biotechnol 153:27–34. doi:10.1016/j.jbiotec.2011.03.003 CrossRefPubMedGoogle Scholar
  96. 96.
    Zhou W, Rehm J, Hu WS (1995) High viable cell concentration fed-batch cultures of hybridoma cells through on-line nutrient feeding. Biotechnol Bioeng 46:579–587. doi:10.1002/bit.260460611 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Biological Process DevelopmentBristol Myers SquibbBloomsburyUSA
  3. 3.AbbVie Bioresearch CenterWorcesterUSA
  4. 4.WuXi AppTecShanghaiChina

Personalised recommendations