Advertisement

Potential of wheat bran to promote indigenous microbial enhanced oil recovery

  • Yali Zhan
  • Qinghong Wang
  • Chunmao Chen
  • Jung Bong Kim
  • Hongdan Zhang
  • Brandon A. Yoza
  • Qing X. LiEmail author
Environmental Microbiology - Original Paper

Abstract

Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

Keywords

Wheat bran Biostimulation Response surface methodology Indigenous microbial enhanced oil recovery 

Notes

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China (No. 21306229), the Korean RDA (No. PJ011884) and the Science Foundation of China University of Petroleum, Beijing (2462014YJRC001).

Supplementary material

10295_2017_1909_MOESM1_ESM.docx (162 kb)
Supplementary material 1 (DOCX 161 kb)

References

  1. 1.
    Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotech 157:329–345. doi: 10.1007/s12010-008-8285-1 CrossRefGoogle Scholar
  2. 2.
    Bao M, Kong X, Jiang G, Wang X, Li X (2009) Laboratory study on activating indigenous microorganisms to enhance oil recovery in Shengli Oilfield. J Petrol Sci Eng 66:42–46. doi: 10.1016/j.petrol.2009.01.001 CrossRefGoogle Scholar
  3. 3.
    Brown LR (2010) Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol 13:316–320. doi: 10.1016/j.mib.2010.01.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Castorena-Cortés G, Zapata-Peñasco I, Roldán-Carrillo T, Reyes-Avila J, Mayol-Castillo M, Román-Vargas S, Olguín-Lora P (2012) Evaluation of indigenous anaerobic microorganisms from Mexican carbonate reservoirs with potential MEOR application. J Petrol Sci Eng 81:86–93. doi: 10.1016/j.petrol.2011.12.010 CrossRefGoogle Scholar
  5. 5.
    Chen L, Guo S, Zhao D (2007) Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve. Chin J Chem Eng 15:520–523. doi: 10.1016/S1004-9541(07)60118-9 CrossRefGoogle Scholar
  6. 6.
    Cho J-C, Giovannoni SJ (2003) Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order ‘Rhizobiales’. Int J Syst Evol Micr 53:1853–1859. doi: 10.1099/ijs.0.02644-0 CrossRefGoogle Scholar
  7. 7.
    Demirel B, Ergun S, Neumann L, Scherer P (2009) Performance and behaviour of the microbial community of an anaerobic biogas digester using sugar beet silage as mono-substrate. Biosyst Eng 102:444–452. doi: 10.1016/j.biosystemseng.2009.01.008 CrossRefGoogle Scholar
  8. 8.
    Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39:1057–1062. doi: 10.1016/S0032-9592(03)00232-2 CrossRefGoogle Scholar
  9. 9.
    Gao P, Li G, Dai X, Dai L, Wang H, Zhao L, Chen Y, Ma T (2013) Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J Microb Biotechnol 29:2045–2054. doi: 10.1007/s11274-013-1367-4 CrossRefGoogle Scholar
  10. 10.
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5:607–617. doi: 10.1046/j.1462-2920.2003.00446.x CrossRefPubMedGoogle Scholar
  11. 11.
    Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 38:1761–1775. doi: 10.1007/s10295-011-1024-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Huang XFSJ, Lu LJ (2010) Effect of pH on demulsibility of demulsification bacteria Alcaligenes sp. S-XJ. (in Chinese). Microbiol Bull (in Chinese) 11:6–11Google Scholar
  13. 13.
    Ji G, Liao B, Tao H, Lei Z (2009) Analysis of bacteria communities in an up-flow fixed-bed (UFB) bioreactor for treating sulfide in hydrocarbon wastewater. Bioresour Technol 100:5056–5062. doi: 10.1016/j.biortech.2009.05.052 CrossRefPubMedGoogle Scholar
  14. 14.
    Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199. doi: 10.1016/j.biortech.2006.12.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Kim SD, Fogler SH (1999) The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation. Appl Microbiol Biotechnol 52:839–844. doi: 10.1007/s002530051601 CrossRefPubMedGoogle Scholar
  16. 16.
    Kobayashi H, Kawaguchi H, Endo K, Mayumi D, Sakata S, Ikarashi M, Miyagawa Y, Maeda H, Sato K (2012) Analysis of methane production by microorganisms indigenous to a depleted oil reservoir for application in microbial enhanced oil recovery. J Biosci Bioeng 113:84–87. doi: 10.1016/j.jbiosc.2011.09.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Lazar I, Petrisor IG, Yen TF (2007) Microbial enhanced oil recovery (MEOR). Petrol Sci Technol 25:1353–1366. doi: 10.1080/10916460701287714 CrossRefGoogle Scholar
  18. 18.
    Li H, Shen TT, Wang XL, Lin KF, Liu YD, Lu SG, Gu JD, Wang P, Lu Q, Du XM (2013) Biodegradation of perchloroethylene and chlorophenol co-contamination and toxic effect on activated sludge performance. Bioresour Technol 137:286–293. doi: 10.1016/j.biortech.2013.02.050 CrossRefPubMedGoogle Scholar
  19. 19.
    Lin CH, Kuo MCT, Su CY, Liang KF, Han YL (2012) A nutrient injection scheme for in situ bio-remediation. J Environ Sci Health Part A Toxic Hazard Subst 47:280–288. doi: 10.1080/10934529.2012.640907 CrossRefGoogle Scholar
  20. 20.
    Liu J-Z, Weng L-P, Zhang Q-L, Xu H, Ji L-N Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J Microbiol Biotechnol 19:317–323. doi: 10.1023/a:1023622925933
  21. 21.
    Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501. doi: 10.1007/s10295-010-0695-8 CrossRefPubMedGoogle Scholar
  22. 22.
    Ma F, Guo JB, Zhao LJ, Chang CC, Cui D (2009) Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour Technol 100:597–602. doi: 10.1016/j.biortech.2008.06.066 CrossRefPubMedGoogle Scholar
  23. 23.
    Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources. J Surfactants Deterg 2:237–241. doi: 10.1007/s11743-999-0078-3
  24. 24.
    Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536. doi: 10.1111/j.1365-2672.2011.05071.x CrossRefPubMedGoogle Scholar
  25. 25.
    Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198. doi: 10.1016/j.envpol.2004.06.009 CrossRefPubMedGoogle Scholar
  26. 26.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  27. 27.
    Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z (2010) Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem Eng J 163:188–194. doi: 10.1016/j.cej.2010.06.044 CrossRefGoogle Scholar
  28. 28.
    Nazina TN, Sokolova DS, Grigor’yan AA, Xue Y-F, Belyaev SS, Ivanov MV (2003) Production of oil-releasing compounds by microorganisms from the Daqing oil field, China. Microbiology 72:173–178. doi: 10.1023/a:1023216014112 CrossRefGoogle Scholar
  29. 29.
    Palmarola-Adrados B, Chotěborská P, Galbe M, Zacchi G (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850. doi: 10.1016/j.biortech.2004.07.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Pornsunthorntawee O, Maksung S, Huayyai O, Rujiravanit R, Chavadej S (2009) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effects of oil loading rate and cycle time. Bioresour Technol 100:812–818. doi: 10.1016/j.biortech.2008.06.034 CrossRefPubMedGoogle Scholar
  31. 31.
    Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97:5979–5991. doi: 10.1007/s00253-013-4863-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Riemann L, Steward GF, Fandino LB, Campbell L, Landry MR, Azam F (1999) Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep Sea Res Part II 46:1791–1811. doi: 10.1016/S0967-0645(99)00044-2 CrossRefGoogle Scholar
  33. 33.
    Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396. doi: 10.1016/j.biortech.2009.11.023 CrossRefPubMedGoogle Scholar
  34. 34.
    Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724. doi: 10.1016/j.pecs.2008.05.001 CrossRefGoogle Scholar
  35. 35.
    Seo J-S, Keum Y-S, Hu Y, Lee S-E, Li QX (2006) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131. doi: 10.1007/s10532-006-9048-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47:111–120. doi: 10.1016/j.watres.2012.09.046 CrossRefPubMedGoogle Scholar
  37. 37.
    Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093. doi: 10.1007/s00253-011-3326-z CrossRefPubMedGoogle Scholar
  38. 38.
    Smits PJ, Rinzema A, Tramper J, Sonsbeek VHM, Knol W (1996) Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics. Appl Microbiol Biotechnol 46:489–496. doi: 10.1007/s002530050849 CrossRefGoogle Scholar
  39. 39.
    Taguchi F, Yamada K, Hasegawa K, Taki-Saito T, Hara K (1996) Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng 82:80–83. doi: 10.1016/0922-338X(96)89460-8 CrossRefGoogle Scholar
  40. 40.
    Vaidya R, Vyas P, Chhatpar HS (2003) Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzyme Microb Technol 33:92–96. doi: 10.1016/S0141-0229(03)00100-5 CrossRefGoogle Scholar
  41. 41.
    Wang J, Ji G, Tian J, Zhang H, Dong H, Yu L (2011) Functional characteriz ation of a biosurfactant-producing thermo-tolerant bacteria isolated from an oil reservoir. Petroleum Sci 8:353–356. doi: 10.1007/s12182-011-0152-y CrossRefGoogle Scholar
  42. 42.
    Wang J, Ma T, Zhao L, Lv J, Li G, Zhang H, Zhao B, Liang F, Liu R (2008) Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biotechnol 35:619–628. doi: 10.1007/s10295-008-0326-9 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang LY, Ke WJ, Sun XB, Liu JF, Gu JD, Mu BZ (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98:4209–4221. doi: 10.1007/s00253-013-5472-y CrossRefPubMedGoogle Scholar
  44. 44.
    Xiang T, Liu X, Zhang M, Liu F, Li B, Fu H, Zhao L, Hu W (2009) Distribution of the indigenous microorganisms and mechanisms of their orientational activation in Daqing Oilfield. Sci China Ser D Earth Sci 52:128–134. doi: 10.1007/s11430-009-5006-8 CrossRefGoogle Scholar
  45. 45.
    Xiong C, Jinhua W, Dongsheng L (2007) Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology. Biochem Eng J 34:179–184. doi: 10.1016/j.bej.2006.12.012 CrossRefGoogle Scholar
  46. 46.
    Xu K, Liu H, Chen J (2010) Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour Technol 101:2600–2607. doi: 10.1016/j.biortech.2009.10.059 CrossRefPubMedGoogle Scholar
  47. 47.
    Xu Y, Lu M (2011) Microbially enhanced oil recovery at simulated reservoir conditions by use of engineered bacteria. J Petrol Sci Eng 78:233–238. doi: 10.1016/j.petrol.2011.06.005 CrossRefGoogle Scholar
  48. 48.
    Yao C, Lei G, Ma J, Zhao F, Cao G (2012) Laboratory experiment, modeling and field application of indigenous microbial flooding. J Petrol Sci Eng 90–91:39–47. doi: 10.1016/j.petrol.2012.04.001 CrossRefGoogle Scholar
  49. 49.
    Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44:302–308. doi: 10.1016/j.procbio.2008.11.003 CrossRefGoogle Scholar
  50. 50.
    Zhang F, She YH, Li HM, Zhang XT, Shu FC, Wang ZL, Yu LJ, Hou DJ (2011) Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir. Appl Microbiol Biotechnol 95:811–821. doi: 10.1007/s00253-011-3717-1 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang F, She YH, Ma SS, Hu JM, Banat IM, Hou DJ (2010) Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China. Appl Microbiol Biotechnol 88:1413–1422. doi: 10.1007/s00253-010-2841-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128:12205–12210. doi: 10.1021/ja0635682 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang X, Xiang T (2010) Review on microbial enhanced oil recovery technology and development in China. Int J Petrol Sci Technol 4:61–80Google Scholar
  54. 54.
    Zhao F, Mandlaa M, Hao J, Liang X, Shi R, Han S, Zhang Y (2014) Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery. Lett Appl Microbiol 59:231–237. doi: 10.1111/lam.12269 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  2. 2.Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Department of Agro-Food ResourcesNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
  4. 4.Hawaii Natural Energy InstituteUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations