Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation

  • Jilai Zhou
  • Xiongjun Shao
  • Daniel G. Olson
  • Sean Jean-Loup Murphy
  • Liang Tian
  • Lee R. LyndEmail author
Bioenergy/Biofuels/Biochemicals - Original Paper


Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60–70%.


Bioethanol Gene deletion Thermophilic bacteria Bifunctional alcohol dehydrogenase 



We thank Marybeth I. Maloney for preparing genomic DNA for resequencing and Dr. Johannes P. van Dijken for providing valuable suggestions and comments for experiments.

The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

The genomic resequencing work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Notice: This manuscript has been authored by Dartmouth College under contract No. DE-AC05-00OR22725 with U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable world-wide license to publish or reproduce the published form of this manuscript or allow others to do so, for United States Government purposes. (End of Notice).


  1. 1.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294. doi: 10.1128/AEM.00646-11 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci 111:17618–17623. doi: 10.1073/pnas.1413789111 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Biosciences BD (2006) BD Bionutrients ™ technical manual—advanced bioprocessing. Franklin Lakes, NJGoogle Scholar
  4. 4.
    Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR (2014) Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 21:17–25. doi: 10.1016/j.ymben.2013.10.012 CrossRefPubMedGoogle Scholar
  5. 5.
    Blamey JM, Adams MW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta 1161:19–27CrossRefPubMedGoogle Scholar
  6. 6.
    Bogin O, Peretz M, Burstein Y (1997) Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Sci 6:450–458. doi: 10.1002/pro.5560060223 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 108:13752–13757. doi: 10.1073/pnas.1102444108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bryant F, Ljungdahl LG (1981) Characterization of an alcohol dehydrogenase from Thermoanaerobacter ethanolicus active with ethanol and secondary alcohols. Biochem Biophys Res Commun 100:793–799. doi: 10.1016/S0006-291X(81)80244-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Bryant FO, Wiegel J, Ljungdahl LG (1988) Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus. Appl Environ Microbiol 54:460–465PubMedPubMedCentralGoogle Scholar
  10. 10.
    Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase–acetyl-CoA reductive. Biochem J 302:163–170CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burdette DS, Vieille C, Zeikus JG (1996) Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 316(1):115–122CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295. doi: 10.1186/1471-2180-12-295 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Croux C, Canard B, Goma G, Soucaille P (1992) Autolysis of Clostridium acetobutylicum ATCC 824. J Gen Microbiol 138:861–869. doi: 10.1099/00221287-138-5-861 CrossRefPubMedGoogle Scholar
  14. 14.
    Deng Y, Olson DG, Zhou J, Herring CD, Joe Shaw A, Lynd LR (2013) Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 15:151–158. doi: 10.1016/j.ymben.2012.11.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Extance J, Crennell SJ, Eley K, Cripps R, Hough DW, Danson MJ (2013) Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta Crystallogr D Biol Crystallogr 69:2104–2115. doi: 10.1107/S0907444913020349 CrossRefPubMedGoogle Scholar
  17. 17.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. doi: 10.1093/nar/gkv1344 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi: 10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  19. 19.
    Heider J, Ma K, Adams MW (1995) Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. J Bacteriol 177:4757–4764CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, Ramsay BD, He Z, Wu L, Van Nostrand J, Xu J, Tang YJ, Wiegel J, Phelps TJ, Zhou J (2011) Correlation of genomic and physiological traits of Thermoanaerobacter species with biofuel yields. Appl Environ Microbiol 77:7998–8008. doi: 10.1128/AEM.05677-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Herring CD, Kenealy WR, Shaw AJ, Raman B, Tschaplinski TJ, Brown SD, Davison BH, Covalla SF, Sillers WR, Xu H, Tsakraklides V, Hogsett DA (2012) Final report on development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol. doi: 10.2172/1033560Google Scholar
  22. 22.
    Hess V, Poehlein A, Weghoff M, Daniel R, Müller V (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genom 15:1139. doi: 10.1186/1471-2164-15-1139 CrossRefGoogle Scholar
  23. 23.
    Holt PJ, Williams RE, Jordan KN, Lowe CR, Bruce NC (2000) Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol Lett 190:57–62. doi: 10.1111/j.1574-6968.2000.tb09262.x CrossRefPubMedGoogle Scholar
  24. 24.
    Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H (1999) Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956CrossRefPubMedGoogle Scholar
  25. 25.
    Li C, Heatwole J, Soelaiman S, Shoham M (1999) Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins 37:619–627CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Z, Qiao K, Tian L, Zhang Q, Liu ZY, Li FL (2015) Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front Microbiol 6:1–7. doi: 10.3389/fmicb.2015.00950 Google Scholar
  27. 27.
    Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197:1386–1393. doi: 10.1128/JB.02450-14 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/MMBR.66.3.506 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Olson D, Lynd L (2012) Transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330. doi: 10.1016/b978-0-12-415931-0.00017-3 CrossRefPubMedGoogle Scholar
  30. 30.
    Olson DG, Lynd LR (2012) Computational design and characterization of a temperature-sensitive plasmid replicon for Gram-positive thermophiles. J Biol Eng 6:5. doi: 10.1186/1754-1611-6-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pei J, Zhou Q, Jiang Y, Le Y, Li H, Shao W, Wiegel J (2010) Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metab Eng 12:420–428. doi: 10.1016/j.ymben.2010.06.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Peng H, Wu G, Shao W (2008) The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200. Anaerobe 14:125–127. doi: 10.1016/j.anaerobe.2007.09.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616. doi: 10.1016/S0168-6445(03)00068-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Shao X, Raman B, Zhu M, Mielenz J, Brown S, Guss A, Lynd L (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 92:641–652. doi: 10.1007/s00253-011-3492-z CrossRefPubMedGoogle Scholar
  35. 35.
    Shao X, Zhou J, Olson DG, Lynd LR (2016) A markerless gene deletion and integration system for Thermoanaerobacter ethanolicus. Biotechnol Biofuels 9:100. doi: 10.1186/s13068-016-0514-1 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464. doi: 10.1128/JB.00497-09 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shaw AJ, Hogsett DA, Lynd LR (2010) Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 76:4713–4719. doi: 10.1128/AEM.00402-10 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shaw AJ, Podkaminer K, Desai S, Bardsley J, Rogers S, Thorne P, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774. doi: 10.1073/pnas.0801266105 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shaw JA, Miller BB, Rogers SR, Kenealy WR, Meola A, Bhandiwad A, Sillers WR, Shikhare I, Hogsett DA, Herring CD (2015) Anaerobic detoxification of acetic acid in a thermophilic ethanologen. Biotechnol Biofuels 8:1–12. doi: 10.1186/s13068-015-0257-4 CrossRefGoogle Scholar
  40. 40.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tolonen AC, Zuroff TR, Ramya M, Boutard M, Cerisy T, Curtis WR (2015) Physiology, genomics, and pathway engineering of an ethanol-tolerant strain of Clostridium phytofermentans. Appl Environ Microbiol 81:5440–5448. doi: 10.1128/AEM.00619-15 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR (2013) Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol 40:725–734. doi: 10.1007/s10295-013-1275-5 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang Q, Wang Q, Tong W, Bai X, Chen Z, Zhao J, Zhang J, Liu S (2012) Regulation of enzyme activity of alcohol dehydrogenase through its interactions with pyruvate-ferredoxin oxidoreductase in Thermoanaerobacter tengcongensis. Biochem Biophys Res Commun 417:1018–1023. doi: 10.1016/j.bbrc.2011.12.083 CrossRefPubMedGoogle Scholar
  44. 44.
    Wiegel J, Ljungdahl L (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 1979:343–348CrossRefGoogle Scholar
  45. 45.
    Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong. China. Int J Syst Evol Microbiol 51:1335–1341. doi: 10.1099/00207713-51-4-1335 CrossRefPubMedGoogle Scholar
  46. 46.
    Yao S, Mikkelsen MJ (2010) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19:123–133. doi: 10.1159/000321498 CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang YP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106. doi: 10.1128/JB.187.1.99-106.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zheng T, Olson DG, Murphy SJ, Shao X, Tian L, Lynd LR (2016) Both adhE and a separate NADPH-dependent alcohol dehydrogenase (adhA) are necessary for high ethanol production in Thermoanaerobacterium saccharolyticum. J Bacteriol: JB00542. doi: 10.1128/JB.00542-16Google Scholar
  49. 49.
    Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw JA, van Dijken JP, Lynd LR (2015) Cofactor specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutants of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197:2610–2619. doi: 10.1128/JB.00232-15 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhou J, Olson DG, Argyros D, Deng Y, van Gulik W, van Dijken J, Lynd LR (2013) Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol 79:3000–3008. doi: 10.1128/aem.04037-12 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhou J, Olson DG, Lanahan AA, Tian L, Murphy SJ-L, Lo J, Lynd LR (2015) Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biotechnol Biofuels 8:138. doi: 10.1186/s13068-015-0304-1 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  • Jilai Zhou
    • 1
    • 2
  • Xiongjun Shao
    • 1
    • 2
  • Daniel G. Olson
    • 1
    • 2
  • Sean Jean-Loup Murphy
    • 1
    • 2
  • Liang Tian
    • 1
    • 2
  • Lee R. Lynd
    • 1
    • 2
    Email author
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Bioenergy Science CenterOak RidgeUSA

Personalised recommendations