Advertisement

Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing

  • Marvin Kadisch
  • Andreas Schmid
  • Bruno BühlerEmail author
Biocatalysis - Original Paper

Abstract

Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW −1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

Keywords

BioH Fatty acid methyl ester hydrolysis Whole-cell biocatalysis Industrial biotechnology Metabolic engineering 

Notes

Acknowledgements

The results contribute to the programme topic Solar Fuels funded by the Helmholtz Research Programme, co-financed by the German Federal Ministry of Education and Research (BMBF, Grant Number 0316044A). The authors are grateful for financial support of the Centre for Biocatalysis (MiKat) at the Helmholtz Centre for Environmental Research by European Regional Development Funds (EFRE—Europe funds Saxony) and the Helmholtz Association. We thank Britta Dettweiler (former Laboratory of Chemical Biotechnology, TU Dortmund University) for experimental support. MK, AS, and BB are thankful for using infrastructure of TU Dortmund University at the former Laboratory of Chemical Biotechnology.

References

  1. 1.
    Akatsuka H, Kawai E, Sakurai N, Omori K (2003) The Serratia marcescens bioH gene encodes an esterase. Gene 302:185–192. doi: 10.1016/S0378111902011502 CrossRefPubMedGoogle Scholar
  2. 2.
    Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. doi: 10.1038/msb4100050 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bae JH, Park BG, Jung E, Lee P-G, Kim B-G (2014) fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Appl Microbiol Biotechnol 98:8917–8925. doi: 10.1007/s00253-014-5974-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508–1526. doi: 10.1039/C5NP00068H CrossRefPubMedGoogle Scholar
  5. 5.
    Blank LM, Ebert BE, Bühler B, Schmid A (2008) Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification. Biotechnol Bioeng 100:1050–1065. doi: 10.1002/bit.21837 CrossRefPubMedGoogle Scholar
  6. 6.
    Brandenbusch C, Glonke S, Collins J, Hoffrogge R, Grunwald K, Bühler B, Schmid A, Sadowski G (2015) Process boundaries of irreversible scCO2-assisted phase separation in biphasic whole-cell biocatalysis. Biotechnol Bioeng 112:2316–2323. doi: 10.1002/bit.25655 CrossRefPubMedGoogle Scholar
  7. 7.
    Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 82:833–842. doi: 10.1002/bit.10637 CrossRefPubMedGoogle Scholar
  8. 8.
    Campbell JW, Morgan-Kiss RM, Cronan EJ (2003) A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol Microbiol 47:793–805. doi: 10.1046/j.1365-2958.2003.03341.x CrossRefPubMedGoogle Scholar
  9. 9.
    Cao Z, Gao H, Liu M, Jiao P (2006) Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol J 1:68–74. doi: 10.1002/biot.200500008 CrossRefPubMedGoogle Scholar
  10. 10.
    Clomburg JM, Blankschien MD, Vick JE, Chou A, Kim S, Gonzalez R (2015) Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng 28:202–212. doi: 10.1016/j.ymben.2015.01.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34. doi: 10.1016/j.enconman.2008.09.001 CrossRefGoogle Scholar
  12. 12.
    Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839. doi: 10.1111/j.1365-2958.2007.05947.x CrossRefPubMedGoogle Scholar
  13. 13.
    Garg S, Rizhsky L, Jin H, Yu X, Jing F, Yandeau-Nelson MD, Nikolau BJ (2016) Microbial production of bi-functional molecules by diversification of the fatty acid pathway. Metab Eng 35:9–20. doi: 10.1016/j.ymben.2016.01.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Grant C, Deszcz D, Wei Y-C et al (2014) Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Sci Rep. doi: 10.1038/srep05844 Google Scholar
  15. 15.
    Gross R, Lang K, Buehler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717. doi: 10.1002/bit.22584 PubMedGoogle Scholar
  16. 16.
    Heeres AS, Picone CSF, van der Wielen LAM, Cunha RL, Cuellar MC (2014) Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 32:221–229. doi: 10.1016/j.tibtech.2014.02.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415. doi: 10.1016/0167-7799(94)90029-9 CrossRefGoogle Scholar
  18. 18.
    Honda Malca S (2013) Substrate characterization and protein engineering of bacterial cytochrome P450 monooxygenases for the bio-based synthesis of omega-hydroxylated aliphatic compounds. PhD thesis, University of Stuttgart. doi: 10.18419/opus-1388
  19. 19.
    Jang H-Y, Jeon E-Y, Baek A-H, Lee S-M, Park J-B (2014) Production of ω-hydroxyundec-9-enoic acid and n-heptanoic acid from ricinoleic acid by recombinant Escherichia coli-based biocatalyst. Process Biochem 49:617–622. doi: 10.1016/j.procbio.2014.01.025 CrossRefGoogle Scholar
  20. 20.
    Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733. doi: 10.1128/AEM.00949-12 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536. doi: 10.1099/mic.0.29028-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Klein K, Steinberg R, Fiethen B, Overath P (1971) Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem 19:442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x CrossRefPubMedGoogle Scholar
  23. 23.
    Kusunose M, Coon MJ, Kusunose E (1964) Enzymatic ω-oxidation of fatty acids: I. Products of octanoate, decanoate, and laurate oxidation. J Biol Chem 239:1374–1380PubMedGoogle Scholar
  24. 24.
    Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87. doi: 10.1002/bit.260300112 CrossRefPubMedGoogle Scholar
  25. 25.
    Ladkau N, Assmann M, Schrewe M, Julsing MK, Schmid A, Bühler B (2016) Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli. Metab Eng 36:1–9. doi: 10.1016/j.ymben.2016.02.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Leive L (1974) The barrier function of the Gram-negative envelope. Ann N Y Acad Sci 235:109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x CrossRefPubMedGoogle Scholar
  27. 27.
    Lennen RM, Kruziki MA, Kumar K et al (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128. doi: 10.1128/AEM.05421-11 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin S, Cronan JE (2011) Closing in on complete pathways of biotin biosynthesis. Mol BioSyst 7:1811–1821. doi: 10.1039/c1mb05022b CrossRefPubMedGoogle Scholar
  29. 29.
    Lin S, Hanson RE, Cronan JE (2010) Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6:682–688. doi: 10.1038/nchembio.420 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lundemo MT, Woodley JM (2015) Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 99:2465–2483. doi: 10.1007/s00253-015-6403-x CrossRefPubMedGoogle Scholar
  31. 31.
    McKenna EJ, Coon MJ (1970) Enzymatic ω-oxidation: IV. Purification and properties of the ω-hydroxylase of Pseudomonas oleovorans. J Biol Chem 245:3882–3889PubMedGoogle Scholar
  32. 32.
    Nawabi P, Bauer S, Kyrpides N, Lykidis A (2011) Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol 77:8052–8061. doi: 10.1128/AEM.05046-11 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nieboer M, Vis AJ, Witholt B (1996) Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis. Eur J Biochem 241:691–696. doi: 10.1111/j.1432-1033.1996.00691.x CrossRefPubMedGoogle Scholar
  34. 34.
    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi: 10.1128/mmbr.67.4.593-656.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nunn WD (1986) A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev 50:179–192PubMedPubMedCentralGoogle Scholar
  36. 36.
    Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332PubMedPubMedCentralGoogle Scholar
  37. 37.
    Park JB, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512. doi: 10.1002/bit.21037 CrossRefPubMedGoogle Scholar
  38. 38.
    Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328. doi: 10.1038/nature11478 CrossRefPubMedGoogle Scholar
  39. 39.
    Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long–chain dicarboxylic acids. Bio/Technology 10:894–898. doi: 10.1038/nbt0892-894 CrossRefPubMedGoogle Scholar
  40. 40.
    Riesenberg D (1991) High cell density cultivation of Escherichia coli. Curr Opin Biotechnol 2:380–384. doi: 10.1016/S0958-1669(05)80142-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Sambrook J, Russell DW (2001) Molecular cloning—a laboratory manual, 3rd edn. Cold Spring harbor Laboratory Press, New YorkGoogle Scholar
  42. 42.
    Sanishvili R, Yakunin AF, Laskowski RA et al (2003) Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J Biol Chem 278:26039–26045. doi: 10.1074/jbc.M303867200 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sayers EW, Barrett T, Benson DA et al (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–D15. doi: 10.1093/nar/gkn741 CrossRefPubMedGoogle Scholar
  44. 44.
    Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42:6346–6377. doi: 10.1039/c3cs60011d CrossRefPubMedGoogle Scholar
  45. 45.
    Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B (2014) Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnol Bioeng 111:1820–1830. doi: 10.1002/bit.25248 CrossRefPubMedGoogle Scholar
  46. 46.
    Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst. Adv Synth Catal 355:1693–1697. doi: 10.1002/adsc.201200958 CrossRefGoogle Scholar
  47. 47.
    Schrewe M, Magnusson AO, Willrodt C, Bühler B, Schmid A (2011) Kinetic analysis of terminal and unactivated C–H bond oxyfunctionalization in fatty acid methyl esters by monooxygenase-based whole-cell biocatalysis. Adv Synth Catal 353:3485–3495. doi: 10.1002/adsc.201100440 CrossRefGoogle Scholar
  48. 48.
    Shapiro MM, Chakravartty V, Cronan JE (2012) Remarkable diversity in the enzymes catalyzing the last step in synthesis of the pimelate moiety of biotin. PLoS One 7:e49440. doi: 10.1371/journal.pone.0049440 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7. doi: 10.1016/j.ymben.2014.06.003 CrossRefPubMedGoogle Scholar
  50. 50.
    Sherkhanov S, Korman TP, Clarke SG, Bowie JU (2016) Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci Rep 6:24239. doi: 10.1038/srep24239
  51. 51.
    Shi Y, Pan Y, Li B, He W, She Q, Chen L (2013) Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents. BMC Biotechnol 13:13. doi: 10.1186/1472-6750-13-13 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Steen EJ, Kang YS, Bokinsky G, Hu ZH, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–563. doi: 10.1038/nature08721 CrossRefPubMedGoogle Scholar
  53. 53.
    Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274. doi: 10.1021/op1002165 CrossRefGoogle Scholar
  54. 54.
    Xie X, Wong WW, Tang Y (2007) Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metab Eng 9:379–386. doi: 10.1016/j.ymben.2007.05.006 CrossRefPubMedGoogle Scholar
  55. 55.
    Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631. doi: 10.1016/j.apenergy.2013.09.029 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  1. 1.Department Solar MaterialsHelmholtz Centre for Environmental Research–UFZLeipzigGermany

Personalised recommendations