Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators

  • Byung Eun Min
  • Hyun Gyu Hwang
  • Hyun Gyu Lim
  • Gyoo Yeol Jung
Metabolic Engineering and Synthetic Biology - Mini Review


Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.


Dynamic regulator Synthetic biology Industrial microorganism Quorum sensing Transcription factors 



This research was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2015R1A2A1A10056126) and grants from the Advanced Biomass R&D Center (ABC) of Global Frontier Project (ABC-2015M3A6A2066119) and C1 Gas Refinery Program (NRF-2016M3D3A1A01913237) funded by the Ministry of Science, ICT & Future Planning of Korea.


  1. 1.
    Anthamatten D, Scherb B, Hennecke H (1992) Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes. J Bacteriol 174:2111–2120PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35PubMedCrossRefGoogle Scholar
  3. 3.
    Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci USA 101:6421–6426PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bayly AM, Kortt AA, Hudson PJ, Power BE (2002) Large-scale bacterial fermentation and isolation of scFv multimers using a heat-inducible bacterial expression vector. J Immunol Methods 262:217–227PubMedCrossRefGoogle Scholar
  5. 5.
    Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brockman IM, Prather KL (2015) Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng 28:104–113PubMedCrossRefGoogle Scholar
  7. 7.
    Bsat N, Herbig A, Casillas Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198PubMedCrossRefGoogle Scholar
  8. 8.
    Bulter T, Lee SG, Wong WW, Fung E, Connor MR, Liao JC (2004) Design of artificial cell–cell communication using gene and metabolic networks. Proc Natl Acad Sci USA 101:2299–2304PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci USA 109:5850–5855PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681PubMedCrossRefGoogle Scholar
  11. 11.
    Chen P, He C (2004) A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc 126:728–729PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32:337–343PubMedCrossRefGoogle Scholar
  13. 13.
    Chiang SM, Schellhorn HE (2012) Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 525:161–169PubMedCrossRefGoogle Scholar
  14. 14.
    Cho C, Choi SY, Luo ZW, Lee SY (2015) Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 33:1455–1466PubMedCrossRefGoogle Scholar
  15. 15.
    Collins CH, Leadbetter JR, Arnold FH (2006) Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol 24:708–712PubMedCrossRefGoogle Scholar
  16. 16.
    Crack J, Green J, Thomson AJ (2004) Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279:9278–9286PubMedCrossRefGoogle Scholar
  17. 17.
    Cress BF, Trantas EA, Ververidis F, Linhardt RJ, Koffas MAG (2015) Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 36:205–214PubMedCrossRefGoogle Scholar
  18. 18.
    Dahl RH, Zhang F, Alonso Gutierrez J, Baidoo E, Batth TS, Redding Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046PubMedCrossRefGoogle Scholar
  19. 19.
    Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254PubMedCrossRefGoogle Scholar
  20. 20.
    Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2:47–58PubMedCrossRefGoogle Scholar
  21. 21.
    Escolar L, Pérez-Martín J, De Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229PubMedPubMedCentralGoogle Scholar
  22. 22.
    Espah Borujeni A, Mishler DM, Wang J, Huso W, Salis HM (2016) Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 44:1–13PubMedCrossRefGoogle Scholar
  23. 23.
    Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57PubMedCrossRefGoogle Scholar
  24. 24.
    Fiorentino G, Ronca R, Bartolucci S (2009) A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein. Appl Microbiol Biotechnol 82:67–77PubMedCrossRefGoogle Scholar
  25. 25.
    Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304PubMedCrossRefGoogle Scholar
  26. 26.
    Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695PubMedCrossRefGoogle Scholar
  27. 27.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342PubMedCrossRefGoogle Scholar
  28. 28.
    Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiley PJ (2013) Regulation of iron–sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe–2S]–IscR in Escherichia coli. Mol Microbiol 87:478–492PubMedCrossRefGoogle Scholar
  29. 29.
    Groher F, Suess B (2014) Synthetic riboswitches—a tool comes of age. Biochim Biophys Acta 1839:964–973PubMedCrossRefGoogle Scholar
  30. 30.
    Gualerzi CO, Maria Giuliodori A, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539PubMedCrossRefGoogle Scholar
  31. 31.
    Hawkins AC, Arnold FH, Stuermer R, Hauer B, Leadbetter JR (2007) Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol 73:5775–5781PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23PubMedCrossRefGoogle Scholar
  33. 33.
    Hussain F, Gupta C, Hirning AJ, Ott W, Matthews KS, Josić K, Bennett MR (2014) Engineered temperature compensation in a synthetic genetic clock. Proc Natl Acad Sci USA 111:972–977PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum Genet 2:343–372CrossRefGoogle Scholar
  35. 35.
    Immethun CM, Ng KM, DeLorenzo DM, Waldron Feinstein B, Lee YC, Moon TS (2016) Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113:433–442PubMedCrossRefGoogle Scholar
  36. 36.
    Jones JA, Toparlak OD, Koffas MAG (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59PubMedCrossRefGoogle Scholar
  37. 37.
    Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Khmel IA (2006) Quorum-sensing regulation of gene expression: fundamental and applied aspects and the role in bacterial communication. Mikrobiologiia 75:457–464PubMedGoogle Scholar
  39. 39.
    López-Nieto M, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, De la Fuente J, Cabri W, Barredo J (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159PubMedCrossRefGoogle Scholar
  40. 40.
    Lee SW, Oh MK (2015) A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab Eng 28:143–150PubMedCrossRefGoogle Scholar
  41. 41.
    Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  42. 42.
    Liao VHC, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24:1624–1631PubMedCrossRefGoogle Scholar
  43. 43.
    Lim HG, Lim JH, Jung GY (2015) Modular design of metabolic network for robust production of n-butanol from galactose–glucose mixtures. Biotechnol Biofuels 8:137PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lim HG, Noh MH, Jeong JH, Park S, Jung GY (2016) Optimum Rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth Biol. doi: 10.1021/acssynbio.5b00303 Google Scholar
  45. 45.
    Lim JH, Seo SW, Kim SY, Jung GY (2013) Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 20:56–62PubMedCrossRefGoogle Scholar
  46. 46.
    Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141PubMedCrossRefGoogle Scholar
  47. 47.
    Mahr R, Frunzke J (2016) Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 100:79–90PubMedCrossRefGoogle Scholar
  48. 48.
    Martínez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Microbiol 23:965–971Google Scholar
  49. 49.
    Masuda N, Church GM (2003) Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712PubMedCrossRefGoogle Scholar
  50. 50.
    McNicholas PM, Gunsalus RP (2002) The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability. J Bacteriol 184:3253–3259PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14:306–316PubMedCrossRefGoogle Scholar
  52. 52.
    Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Novick RP (1999) Regulation of pathogenicity in Staphylococcus aureus by a peptide-based density-sensing system. Cell-cell signaling in bacteria. ASM Press, Washington, DC, pp 129–146Google Scholar
  54. 54.
    Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  55. 55.
    Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458PubMedCrossRefGoogle Scholar
  56. 56.
    Novick RP, Ross H, Projan S, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967PubMedPubMedCentralGoogle Scholar
  57. 57.
    Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17PubMedCrossRefGoogle Scholar
  58. 58.
    Osella M, Lagomarsino MC (2013) Growth-rate-dependent dynamics of a bacterial genetic oscillator. Phys Rev E Stat Nonlin Soft Matter Phys 87:012726PubMedCrossRefGoogle Scholar
  59. 59.
    Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662PubMedCrossRefGoogle Scholar
  60. 60.
    Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210PubMedCrossRefGoogle Scholar
  61. 61.
    Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Posey JE, Hardham JM, Norris SJ, Gherardini FC (1999) Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc Natl Acad Sci USA 96:10887–10892PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Qi Z, Hamza I, O’Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96:13056–13061PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468PubMedCrossRefGoogle Scholar
  66. 66.
    Ravikumar S, Ganesh I, I-k Yoo, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47:758–765CrossRefGoogle Scholar
  67. 67.
    Ravikumar S, I-k Yoo, Lee SY, Hong SH (2011) Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl Biochem Biotechnol 165:1674–1681PubMedCrossRefGoogle Scholar
  68. 68.
    Reed B, Blazeck J, Alper H (2012) Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes. J Biotechnol 158:75–79PubMedCrossRefGoogle Scholar
  69. 69.
    Saenz HL, Augsburger V, Vuong C, Jack RW, Gotz F, Otto M (2000) Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch Microbiol 174:452–455PubMedCrossRefGoogle Scholar
  70. 70.
    Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108PubMedCrossRefGoogle Scholar
  71. 71.
    Seo SW, Kim D, Latif H, O’Brien EJ, Szubin R, Palsson BO (2014) Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 5:4910PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, Kim SC, Kim SY, Jeong JH, Jung GY (2013) Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv 31:811–817PubMedCrossRefGoogle Scholar
  73. 73.
    Shalel-Levanon S, San K-Y, Bennett GN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92:147–159PubMedCrossRefGoogle Scholar
  74. 74.
    Siedler S, Stahlhut SG, Malla S, Maury J, Neves AR (2014) Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab Eng 21:2–8PubMedCrossRefGoogle Scholar
  75. 75.
    Soma Y, Hanai T (2015) Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 30:7–15PubMedCrossRefGoogle Scholar
  76. 76.
    Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T (2014) Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 23:175–184PubMedCrossRefGoogle Scholar
  77. 77.
    Steindler L, Bertani I, De Sordi L, Schwager S, Eberl L, Venturi V (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75:5131–5140PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685PubMedCrossRefGoogle Scholar
  79. 79.
    Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519PubMedCrossRefGoogle Scholar
  80. 80.
    Striedner G, Cserjan -Puschmann M, Pötschacher F, Bayer K (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog 19:1427–1432PubMedCrossRefGoogle Scholar
  81. 81.
    Sun S, Zhou L, Jin K, Jiang H, He Y-W (2016) Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201. Sci Rep 6:30352PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Taga ME, Miller ST, Bassler BL (2003) Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol 50:1411–1427PubMedCrossRefGoogle Scholar
  83. 83.
    Tang SY, Cirino PC (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chem Int Ed Engl 50:1084–1086PubMedCrossRefGoogle Scholar
  84. 84.
    Tang SY, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135:10099–10103PubMedCrossRefGoogle Scholar
  85. 85.
    Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor sigma. J Bacteriol 171:1585–1589PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tsao CY, Hooshangi S, Wu HC, Valdes JJ, Bentley WE (2010) Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng 12:291–297PubMedCrossRefGoogle Scholar
  87. 87.
    van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57CrossRefGoogle Scholar
  88. 88.
    Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17:548–557PubMedCrossRefGoogle Scholar
  89. 89.
    Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang J, Gao D, Yu X, Li W, Qi Q (2015) Evolution of a chimeric aspartate kinase for l-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol 99:8527–8536PubMedCrossRefGoogle Scholar
  91. 91.
    Wang J, Guleria S, Koffas MAG, Yan YJ (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedCrossRefGoogle Scholar
  92. 92.
    Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005) luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Weigand JE, Suess B (2007) Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res 35:4179–4185PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Williams TC, Averesch NJ, Winter G, Plan MR, Vickers CE, Nielsen LK, Kromer JO (2015) Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 29:124–134PubMedCrossRefGoogle Scholar
  95. 95.
    Williams TC, Espinosa MI, Nielsen LK, Vickers CE (2015) Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae. Microb Cell Fact 14:1CrossRefGoogle Scholar
  96. 96.
    Wittmann A, Suess B (2012) Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett 586:2076–2083PubMedCrossRefGoogle Scholar
  97. 97.
    Wu G, Yan Q, Jones JA, Tang YJJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34:652–664PubMedCrossRefGoogle Scholar
  98. 98.
    Xavier KB, Bassler BL (2005) Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA 111:11299–11304PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MA (2013) Design and kinetic analysis of a hybrid promoter–regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 9:451–458PubMedCrossRefGoogle Scholar
  101. 101.
    Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MA (2014) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 9:451–458PubMedCrossRefGoogle Scholar
  102. 102.
    Yamamoto K, Ishihama A (2005) Transcriptional response of Escherichia coli to external zinc. J Bacteriol 187:6333–6340PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yang J, Seo SW, Jang S, Shin S-I, Lim CH, Roh T-Y, Jung GY (2013) Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 4:1413PubMedCrossRefGoogle Scholar
  104. 104.
    Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14:653–660PubMedCrossRefGoogle Scholar
  107. 107.
    Zhou S, Ainala SK, Seol E, Nguyen TT, Park S (2015) Inducible gene expression system by 3-hydroxypropionic acid. Biotechnol Biofuels 8:169PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Byung Eun Min
    • 1
  • Hyun Gyu Hwang
    • 2
  • Hyun Gyu Lim
    • 1
  • Gyoo Yeol Jung
    • 1
    • 2
  1. 1.Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations