Advertisement

Methylophilaceae and Hyphomicrobium as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants

  • Antti J. Rissanen
  • Anne Ojala
  • Tommi Fred
  • Jyrki Toivonen
  • Marja Tiirola
Environmental Microbiology - Original Paper

Abstract

Molecular monitoring of bacterial communities can explain and predict the stability of bioprocesses in varying physicochemical conditions. To study methanol-fed denitrification biofilters of municipal wastewater treatment plants, bacterial communities of two full-scale biofilters were compared through fingerprinting and sequencing of the 16S rRNA genes. Additionally, 16S rRNA gene fingerprinting was used for 10-week temporal monitoring of the bacterial community in one of the biofilters. Combining the data with previous study results, the family Methylophilaceae and genus Hyphomicrobium were determined as suitable target groups for monitoring. An increase in the relative abundance of Hyphomicrobium-related biomarkers occurred simultaneously with increases in water flow, NO x load, and methanol addition, as well as a higher denitrification rate, although the dominating biomarkers linked to Methylophilaceae showed an opposite pattern. The results indicate that during increased loading, stability of the bioprocess is maintained by selection of more efficient denitrifier populations, and this progress can be analyzed using simple molecular fingerprinting.

Keywords

Methanol Denitrification Biofilter Hyphomicrobium Methylophilaceae 

Notes

Acknowledgements

We thank P. Lindholm, P. Lindell, L. Sundell, K. Murtonen, and M. Heinonen for technical assistance. We thank R. Kettunen for valuable comments on this manuscript. We also thank H. Devlin, B. Thamdrup, and S. Hallin for comments on the earlier version of this manuscript. This study was funded by Maa-ja Vesitekniikan Tuki ry for A.J.R and Academy of Finland (Projects 286642 and 140964 to A.J.R and 260797 to M.T.) as well as European Research Council (ERC) Consolidator Project 615146 to M.T.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10295_2016_1860_MOESM1_ESM.pdf (232 kb)
Supplementary material 1 (PDF 231 kb)

References

  1. 1.
    Bamforth CW, Quayle JR (1978) Aerobic and anaerobic growth of Paracoccus denitrificans on methanol. Arch Microbiol 119:91–97CrossRefPubMedGoogle Scholar
  2. 2.
    Baytshtok V, Lu H, Park H, Kim S, Yu R, Khandran K (2009) Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol Bioeng 102:1527–1536CrossRefPubMedGoogle Scholar
  3. 3.
    Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS One 9:e102458CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Blaszczyk M (1993) Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans. Appl Environ Microbiol 59:3951–3953PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic organisms. Annu Rev Microbiol 63:477–499CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Claus G, Kutzner HJ (1985) Denitrification of nitrate and nitric acid with methanol as carbon source. Appl Microbiol Biotechnol 22:378–381CrossRefGoogle Scholar
  7. 7.
    Corona F, Mulas M, Haimi H, Sundell L, Heinonen M, Vahala R (2013) Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant. J Process Contr 23:158–170CrossRefGoogle Scholar
  8. 8.
    Gentile ME, Nyman JL, Criddle CS (2007) Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. ISME J 1:714–728CrossRefPubMedGoogle Scholar
  9. 9.
    Gentile M, Yan T, Tiquia SM, Fields MW, Nyman J, Zhou J, Criddle CS (2006) Stability in a denitrifying fluidized bed reactor. Microb Ecol 52:311–321CrossRefPubMedGoogle Scholar
  10. 10.
    Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable isotope-probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  12. 12.
    Isazadeh S, Ozcer PO, Frigon D (2014) Microbial community structure of wastewater treatment subjected to high mortality rate due to ozonation of return activated sludge. J Appl Microbiol 117:587–596CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 655–682Google Scholar
  14. 14.
    Kalyuzhnaya MG, Beck DA, Vorobev A, Smalley N, Kunkel DD, Lidstrom ME, Chistoserdova L (2012) Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int J Syst Evol Micr 62:106–111CrossRefGoogle Scholar
  15. 15.
    Kalyuzhnaya MG, Boverman S, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Micr 56:2819–2823CrossRefGoogle Scholar
  16. 16.
    Kalyuzhnaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Reports 1:385–392CrossRefGoogle Scholar
  17. 17.
    Koch G, Siegrist H (1997) Denitrification with methanol in tertiary filtration. Water Res 31:3029–3038CrossRefGoogle Scholar
  18. 18.
    Kolb S (2009) Aerobic methanol-oxidizing Bacteria in soil. FEMS Microbiol Lett 300:1–10CrossRefPubMedGoogle Scholar
  19. 19.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  20. 20.
    Lemmer H, Zaglauer A, Metzner G (1997) Denitrification in a methanol-fed fixed-bed reactor. Part 1: Physico-chemical and biological characterization. Water Res 31:1897–1902CrossRefGoogle Scholar
  21. 21.
    Lemmer H, Zaglauer A, Neef A, Meier H, Amann R (1997) Denitrification in a methanol-fed fixed-bed reactor. Part 2: Composition and ecology of the bacterial community in the biofilms. Water Res 31:1903–1908CrossRefGoogle Scholar
  22. 22.
    Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254CrossRefPubMedGoogle Scholar
  23. 23.
    Martineau C, Mauffrey F, Villemur R (2015) Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans and Hyphomicrobium zavarzinii. Appl Environ Microbiol 81:5003–5014CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USAGoogle Scholar
  25. 25.
    Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195:2207–2211CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturating gel electrophoresis of polymerase chain reaction amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  27. 27.
    Neef A, Zaglauer A, Meier H, Amann R, Lemmer H, Schleifer K-H (1996) Population analysis in a denitrifying sand filer: Conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl Environ Microbiol 62:4329–4339PubMedPubMedCentralGoogle Scholar
  28. 28.
    Nurse GR (1980) Denitrification with methanol: microbiology and biochemistry. Water Res 14:531–537CrossRefGoogle Scholar
  29. 29.
    Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52:253–266CrossRefPubMedGoogle Scholar
  30. 30.
    Rainey FA, Ward-Rainey N, Gliesche CG, Stackebrandt E (1998) Phylogenetic analysis and intrageneric structure of the genus and the related genus Filomicrobium. Int J Syst Bacteriol 48:635–639CrossRefPubMedGoogle Scholar
  31. 31.
    Rissanen AJ, Kurhela E, Aho T, Oittinen T, Tiirola M (2010) Storage of environmental samples for guaranteeing nucleic acid yields for molecular microbiological studies. Appl Microbiol Biotechnol 88:977–984CrossRefPubMedGoogle Scholar
  32. 32.
    Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M (2016) Methylophaga and Hyphomicrobium can be used as target genera in monitoring saline water methanol-utilizing denitrification. J Ind Microbiol Biot. doi: 10.1007/s10295-016-1839-2 Google Scholar
  33. 33.
    Saunders AM, Albertsen M, Vollertsen J, Nielsen PH (2016) The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10:11–20CrossRefPubMedGoogle Scholar
  34. 34.
    Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N, Shapiro N, Woyke T, Kalyuzhnaya MG (2015) Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Int J Syst Evol Microbiol 65:2227–2233CrossRefPubMedGoogle Scholar
  35. 35.
    Sperl GT, Hoare DS (1971) Denitrification with methanol: a selective enrichment for Hyphomicrobium species. J Bacteriol 108:733–736PubMedPubMedCentralGoogle Scholar
  36. 36.
    Srinandan CS, D´souza G, Srivastava N, Nayak BB, Nerurkar AS (2012) Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour Technol 117:292–299Google Scholar
  37. 37.
    Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:4522–4529PubMedPubMedCentralGoogle Scholar
  38. 38.
    Timmermans P, Van Heute A (1983) Denitrification with methanol: Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Res 17:1249–1255CrossRefGoogle Scholar
  39. 39.
    Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680CrossRefPubMedGoogle Scholar
  40. 40.
    Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16:2143–2152CrossRefPubMedGoogle Scholar
  41. 41.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wu X-L, Yu S-L, Gu J, Zhao G-F, Chi C-Q (2009) Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. Int J Syst Evol Micr 59:300–305CrossRefGoogle Scholar
  43. 43.
    Zhu J, Wang Q, Yuan M, Tan GYA, Sun F, Wang C, Wu W, Lee PH (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Antti J. Rissanen
    • 1
    • 2
  • Anne Ojala
    • 3
    • 4
  • Tommi Fred
    • 5
  • Jyrki Toivonen
    • 6
  • Marja Tiirola
    • 2
  1. 1.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland
  2. 2.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Helsinki Region Environmental Services Authority HSYHelsinkiFinland
  6. 6.Salon VesiSaloFinland

Personalised recommendations