Journal of Industrial Microbiology & Biotechnology

, Volume 43, Issue 12, pp 1641–1646 | Cite as

A whole cell biocatalyst for double oxidation of cyclooctane

  • C. A. Müller
  • A. M. Weingartner
  • A. Dennig
  • A. J. Ruff
  • H. Gröger
  • Ulrich Schwaneberg
Biocatalysis - Short Communication

Abstract

A novel whole cell cascade for double oxidation of cyclooctane to cyclooctanone was developed. The one-pot oxidation cascade requires only a minimum of reaction components: resting E. coli cells in aqueous buffered medium (=catalyst), the target substrate and oxygen as environmental friendly oxidant. Conversion of cyclooctane was catalysed with high efficiency (50% yield) and excellent selectivity (>94%) to cyclooctanone. The reported oxidation cascade represents a novel whole cell system for double oxidation of non-activated alkanes including an integrated cofactor regeneration. Notably, two alcohol dehydrogenases from Lactobacillus brevis and from Rhodococcus erythropolis with opposite cofactor selectivities and one monooxygenase P450 BM3 were produced in a coexpression system in one single host. The system represents the most efficient route with a TTN of up to 24363 being a promising process in terms of sustainability as well.

Keywords

Alkanes Directed evolution Oxidation Oxidoreductases Cascade reaction Monooxygenase 

Supplementary material

10295_2016_1844_MOESM1_ESM.docx (467 kb)
Supplementary material 1 (DOCX 467 kb)

References

  1. 1.
    Agudo R, Reetz MT (2013) Designer cells for stereocomplementary de novo enzymatic cascade reactions based on laboratory evolution. Chem Commun 49:10914–10916CrossRefGoogle Scholar
  2. 2.
    Blank LM, Ebert BE, Buehler K, Buhler B (2010) Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis. Antioxid Redox Signal 13:349–394. doi:10.1089/ars.2009.2931 CrossRefPubMedGoogle Scholar
  3. 3.
    Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824. doi:10.1002/anie.200300599 CrossRefGoogle Scholar
  4. 4.
    Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943–2989. doi:10.1021/cr040679f CrossRefPubMedGoogle Scholar
  5. 5.
    Crabtree RH (2001) Alkane C-H activation and functionalization with homogeneous transition metal catalysts: a century of progress—A new millennium in prospect. J Chem Soc Dalton Trans 17:2437–2450. doi:10.1039/b103147n CrossRefGoogle Scholar
  6. 6.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Atmospheric-pressure, liquid-phase, selective aerobic oxidation of alkanes catalysed by metal-organic frameworks. Chemistry 17:6256–6262. doi:10.1002/chem.201002664 CrossRefPubMedGoogle Scholar
  7. 7.
    Djernes KE, Padilla M, Mettry M, Young MC, Hooley RJ (2012) Hydrocarbon oxidation catalyzed by self-folded metal-coordinated cavitands. Chem Commun 48:11576–11578. doi:10.1039/c2cc36236h CrossRefGoogle Scholar
  8. 8.
    Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450 BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed 46:8414–8418CrossRefGoogle Scholar
  9. 9.
    Hollmann F, Arends IWCE, Buehler K, Schallmey A, Bühler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13:226–265. doi:10.1039/c0gc00595a CrossRefGoogle Scholar
  10. 10.
    Kühnel K, Maurer S, Galeyeva Y, Frey W, Laschat S, Urlacher VB (2007) Hydroxylation of Dodecanoic Acid and (2R, 4R, 6R, 8R)-Tetra-methyldecanol on a Preparative Scale using an NADH-Dependent CYP102A1 Mutant. Adv Synth Catal 349:1451–1461CrossRefGoogle Scholar
  11. 11.
    Li XH, Chen JS, Wang X, Sun J, Antonietti M (2011) Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J Am Chem Soc 133:8074–8077. doi:10.1021/ja200997a CrossRefPubMedGoogle Scholar
  12. 12.
    Long J, Liu H, Shijian W, Liao S, Li Y (2013) Selective oxidation of saturated hydrocarbons using Au–Pd alloy nanoparticles supported on metal–organic frameworks. ACS Catal 3:647–654CrossRefGoogle Scholar
  13. 13.
    Mandelli D, Chiacchio C, Kozlov YN, Shul’pin GB (2008) Hydroperoxidation of alkanes with hydrogen peroxide catalyzed by aluminium nitrate in acetonitrile. Tetrahedron Lett 49:6693–6697CrossRefGoogle Scholar
  14. 14.
    Müller CA, Akkapurathu B, Winkler T, Staudt S, Hummel W, Gröger H, Schwaneberg U (2013) In vitro Double Oxidation of n-Heptane with Direct Cofactor Regeneration. Adv Synth Catal 355:1787–1798CrossRefGoogle Scholar
  15. 15.
    Müller CA, Dennig A, Welters T, Winkler T, Ruff AJ, Hummel W, Gröger H, Schwaneberg U (2014) Whole-cell double oxidation of n-heptane. J Biotechnol 191:196–204CrossRefPubMedGoogle Scholar
  16. 16.
    Neumann R, Khenkin AM (1996) Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides. Chem Commun 23:2643–2644CrossRefGoogle Scholar
  17. 17.
    Omura T, Sato R (1964) The Carbon monoxide-binding pigment of liver microsomes II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385PubMedGoogle Scholar
  18. 18.
    Peter S, Karich A, Ullrich R, Gröbe G, Scheibner K, Hofrichter M (2014) Enzymatic one-pot conversion of cyclohexane into cyclohexanone: Comparison of four fungal peroxygenases. J Mol Catal B Enzym 103:47–51CrossRefGoogle Scholar
  19. 19.
    Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430CrossRefPubMedGoogle Scholar
  20. 20.
    Schewe H, Holtmann D, Schrader J (2009) P450BM-3-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system. Appl Microbiol Biotechnol 83:849–857. doi:10.1007/s00253-009-1917-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Schrewe M, Julsing MK, Buhler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42:6346–6377. doi:10.1039/c3cs60011d CrossRefPubMedGoogle Scholar
  22. 22.
    Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct Terminal Alkylamino-Functionalization via Multistep Biocatalysis in One Recombinant Whole-Cell Catalyst. Adv Synth Catal 355:1693–1697CrossRefGoogle Scholar
  23. 23.
    Sheldon RA (2008) Enzyme Catalyzed Cascade Reactions. In: Garcia-Junceda E (ed) Multi-Step Enzyme Catalysis-Biotransformations and Chemoenzymatic Synthesis, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932CrossRefPubMedGoogle Scholar
  25. 25.
    Shul’pin GB (2013) C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst’s activity and selectivity. Dalton Trans 42:12794–12818. doi:10.1039/c3dt51004b CrossRefPubMedGoogle Scholar
  26. 26.
    Shul’pin GB, Shilov AE, Süss-Fink G (2001) Alkane oxygenation catalysed by gold complexes. Tetrahedron Lett 42:7253–7256CrossRefGoogle Scholar
  27. 27.
    Silva AR, Mourao T, Rocha J (2013) Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands. Catal Today 203:81–86CrossRefGoogle Scholar
  28. 28.
    Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S, Urlacher VB, Schmid RD, Pongtharangkul T (2012) Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl Microbiol Biotechnol 95:357–367. doi:10.1007/s00253-012-4039-7 CrossRefPubMedGoogle Scholar
  29. 29.
    Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H (2013) Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water. Angew Chem Int Ed 52:2359–2363. doi:10.1002/anie.201204464 CrossRefGoogle Scholar
  30. 30.
    Straathof AJJ (2006) Quantitative Analysis of Industrial Biotransformations. In: Liese A, Seelbach K, Wandrey C (eds) Industrial Biotransformations, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Tatsumi T, Nakamura M, Negishi S, Tominaga H (1990) Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J Chem Soc Chem Commun 6:476–477CrossRefGoogle Scholar
  32. 32.
    Thellend A, Battioni P, Mansuy D (1994) Ammonium acetate as a very simple and efficient cocatalyst for manganese porphyrin-catalysed oxygenation of hydrocarbons by hydrogen peroxide. J Chem Soc Chem Commun 9:1035–1036CrossRefGoogle Scholar
  33. 33.
    Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330. doi:10.1016/j.tibtech.2006.05.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Weissermel K, Arpe H-J (2003) Industrial organic chemistry, 4th edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  35. 35.
    Zehentgruber D, Urlacher VB, Lütz S (2012) Studies on the enantioselective oxidation of ß-ionone with whole E. coli system expressing cytochrome P450 monooxygenase BM3. J Mol Catal B Enzym 84:62–64CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • C. A. Müller
    • 1
  • A. M. Weingartner
    • 1
  • A. Dennig
    • 1
  • A. J. Ruff
    • 1
  • H. Gröger
    • 3
  • Ulrich Schwaneberg
    • 1
    • 2
  1. 1.Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
  2. 2.DWI–Leibniz Institut für Interaktive MaterialienAachenGermany
  3. 3.Faculty of ChemistryBielefeld UniversityBielefeldGermany

Personalised recommendations