Journal of Industrial Microbiology & Biotechnology

, Volume 43, Issue 12, pp 1659–1670 | Cite as

Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli

Metabolic Engineering and Synthetic Biology - Original Paper

Abstract

Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.

Keywords

Acrylic acid Propionic acid Escherichia coli 3-Hydroxypropionate/4-hydroxybutyrate cycle Metallosphaera sedula 

References

  1. 1.
    Akawi L, Srirangan K, Liu X, Moo-Young M, Chou CP (2015) Engineering Escherichia coli for high-level production of propionate. J Ind Microbiol Biotechnol 42:1–16CrossRefGoogle Scholar
  2. 2.
    Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hügler M, Fuchs G (2006) Malonyl-coenzyme a reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 17:1341–1361CrossRefGoogle Scholar
  4. 4.
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786CrossRefPubMedGoogle Scholar
  6. 6.
    Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697CrossRefPubMedGoogle Scholar
  7. 7.
    Chen X, Zhou L, Kangming T, Kumar A, Singh S, Prior BA, Wang Z (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223CrossRefPubMedGoogle Scholar
  8. 8.
    Chu HS, Ahn J-H, Yun J, Choi IS, Nam T-W, Cho KM (2015) Direct fermentation route for the production of acrylic acid. Metab Eng 32:23–29CrossRefPubMedGoogle Scholar
  9. 9.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRefPubMedGoogle Scholar
  10. 10.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598CrossRefPubMedGoogle Scholar
  12. 12.
    Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Ann Rev Microbiol 65:631–658CrossRefGoogle Scholar
  13. 13.
    Guo D, Zhu J, Deng Z, Liu T (2014) Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab Eng 22:69–75CrossRefPubMedGoogle Scholar
  14. 14.
    Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82:995–1003CrossRefPubMedGoogle Scholar
  15. 15.
    Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran K, Buckel W, Jayaraman G, Ramalingam S (2013) Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol 97:1191–1200CrossRefPubMedGoogle Scholar
  16. 16.
    Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci 107:13654–13659CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu C, Ding Y, Zhang R, Liu H, Xian M, Zhao G (2016) Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng 34:1034–1111CrossRefGoogle Scholar
  18. 18.
    Liu H, Lu T (2015) Autonomous production of 1, 4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141CrossRefPubMedGoogle Scholar
  19. 19.
    Liu L, Guan N, Zhu G, Li J, Shin H-d DuG, Chen J (2016) Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Sci Rep 6:19963CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381CrossRefPubMedGoogle Scholar
  21. 21.
    Liu L, Zhuge X, Shin H-d, Chen RR, Li J, Du G, Chen J (2015) Improved production of propionic acid via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae in Propionibacterium jensenii. Appl Environ Microbiol AEM 81:2256–2264CrossRefGoogle Scholar
  22. 22.
    Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, Deng Z, Liu T (2015) Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng 28:82–90CrossRefPubMedGoogle Scholar
  23. 23.
    Liu T, Vora H, Khosla C (2010) Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 12:378–386CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Z, Gao Y, Chen J, Imanaka T, Bao J, Hua Q (2013) Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresour Technol 130:144–151CrossRefPubMedGoogle Scholar
  25. 25.
    Lv L, Ren Y-L, Chen J-C, Wu Q, Chen G-Q (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P (3HB-co-4HB) biosynthesis. Metab Eng 29:160–168CrossRefPubMedGoogle Scholar
  26. 26.
    McMahon MD, Prather KL (2014) Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli. Appl Environ Microbiol 80:1042–1050CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data. Metabol Methods Protoc 358:177–197Google Scholar
  28. 28.
    Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640CrossRefPubMedGoogle Scholar
  29. 29.
    Rodriguez BA, Stowers CC, Pham V, Cox BM (2014) The production of propionic acid, propanol and propylene via sugar fermentation: an industrial perspective on the progress, technical challenges and future outlook. Green Chem 16:1066–1076CrossRefGoogle Scholar
  30. 30.
    Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci 113:2388–2393CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang Z, Ammar EM, Zhang A, Wang L, Lin M, Yang S-T (2015) Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA: succinate CoA transferase. Metab Eng 27:46–56CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Z, Jin Y, Yang ST (2015) High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici. Biotechnol Bioeng 112:502–511CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Z, Lin M, Wang L, Ammar EM, Yang S-T (2015) Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing three biotin-dependent carboxylases. Process Biochem 50:194–204CrossRefGoogle Scholar
  34. 34.
    Wang Z, Yang S-T (2013) Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 137:116–123CrossRefPubMedGoogle Scholar
  35. 35.
    Yang JE, Choi YJ, Lee SJ, Kang K-H, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104CrossRefPubMedGoogle Scholar
  36. 36.
    Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226CrossRefPubMedGoogle Scholar
  37. 37.
    Ye Z, Li X, Cheng Y, Liu Z, Tan G, Zhu F, Fu S, Deng Z, Liu T (2016) Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula. J Ind Microbiol Biotechnol 43:1313–1321CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yin J, Wang H, Fu X-Z, Gao X, Wu Q, Chen G-Q (2015) Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol 99:5523–5534CrossRefPubMedGoogle Scholar
  39. 39.
    Yu X, Liu T, Zhu F, Khosla C (2011) In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci 108:18643–18648CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yuzawa S, Chiba N, Katz L, Keasling JD (2012) Construction of a part of a 3-hydroxypropionate cycle for heterologous polyketide biosynthesis in Escherichia coli. Biochemistry 51:9779–9781CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang H, Stephanopoulos G (2013) Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol 97:3333–3341CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  1. 1.Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhanPeople’s Republic of China
  2. 2.Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhanPeople’s Republic of China
  3. 3.Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhanPeople’s Republic of China

Personalised recommendations