Journal of Industrial Microbiology & Biotechnology

, Volume 43, Issue 11, pp 1497–1505 | Cite as

Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment

  • Roohi Bansal
  • Navdeep Kaur Dhami
  • Abhijit Mukherjee
  • M. Sudhakara Reddy
Environmental Microbiology - Original Paper

Abstract

Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

Keywords

Exiguobacterium mexicanum Urease Carbonic anhydrase Compressive strength Calcite Concrete 

References

  1. 1.
    Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438CrossRefPubMedGoogle Scholar
  2. 2.
    APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. 3.
    Billy C (1980) Problèmes posés par le métabolisme de quelques bactéries calcifiantes aérobies. I. Étude d’une association bacterienne halophile productice d’aragonite en milieu marin. Vieux Milieu 30:165–169Google Scholar
  4. 4.
    BIS: 4031 (Part 6) (1988) Bureau of Indian Standards—methods of physical tests for hydraulic cement—determination of compressive strength of hydraulic cement other than masonry cementGoogle Scholar
  5. 5.
    BIS: 516 (1959) Bureau of Indian Standards—Methods of tests for strength of concrete, New Delhi (Reaffirmed 2004) Google Scholar
  6. 6.
    Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312CrossRefGoogle Scholar
  7. 7.
    Cailleau P, Dragone D, Girou A, Humbert L, Jacquin C, Roques H (1977) Etude experimentale de la pr ´ ecipitation des ´ carbonates de calcium en presence de l’ion magn ´ esium. Bull Soc Fran Miner Crystallogr 100:81–88Google Scholar
  8. 8.
    Dejong J, Burbank M, Kavazanjian E, Weaver T, Montoya B, Hamdan N, Bang S, Esnault-Filet A, Tsesarsky M, Aydilek A, Ciurli S, Tanyu B, Manning DAC, Larrahondo J, Soga K, Chu J, Cheng X, Kuo M, Al Qabany A, Seagren EA, Van Paassen LA, Renforth P, Laloui L, Nelson DC, Hata T, Burns S, Chen CY, Caslake LF, Fauriel S, Jefferis S, Santamarina JC, Inagaki Y, Martinez B, Palomino A (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique 63:287–301CrossRefGoogle Scholar
  9. 9.
    Delgado G, Delgado R, Párraga J, Rivadeneyra MA, Aranda V (2008) Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralisation. Geomicrobiol J 25:1–13CrossRefGoogle Scholar
  10. 10.
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Engn 36:118–136CrossRefGoogle Scholar
  11. 11.
    Dhami NK, Mukherjee A, Reddy MS (2013) Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of Green building materials. World J Microbiol Biotechnol 29:2397–2406CrossRefPubMedGoogle Scholar
  12. 12.
    Dhami NK, Reddy M, Mukherjee A (2012) Biofilm and microbial applications in biomineralized concrete. In: Advanced topics in biomineralization (Ed Jong Seto). InTech, p 137–164Google Scholar
  13. 13.
    Dhami NK, Reddy M, Mukherjee A (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol 23:707–714CrossRefPubMedGoogle Scholar
  14. 14.
    Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172:2552–2561CrossRefPubMedGoogle Scholar
  15. 15.
    Dhami NK, Reddy MS, Mukherjee A (2016) Significant indicators for biomineralisation in sand of varying grain sizes. Constr Build Mater 104:198–207CrossRefGoogle Scholar
  16. 16.
    Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New York, p 768Google Scholar
  17. 17.
    Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado R, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227CrossRefGoogle Scholar
  18. 18.
    Ferrer MR, Quevedo-Sarmiento J, Bejar V, Delgado R, Ramos-Cormenzana A, Rivadeneyra MA (1988) Calcium carbonate formation by Deleya halophila: effect of salt concentration and incubation temperature. Geomicrobiol J 6:49–57CrossRefGoogle Scholar
  19. 19.
    Frankenberger WT, Bingham FT (1982) Influence of salinity on soil enzyme activities. Soil Sci Soc Am J 46:1173–1177CrossRefGoogle Scholar
  20. 20.
    Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  21. 21.
    Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7CrossRefGoogle Scholar
  22. 22.
    Kim HJ, Eom HJ, Park C, Jung J, Shin B, Kim W, Chung N, Choi IG, Park W (2016) Calcium carbonate precipitation by Bacillus and Sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. J Microbiol Biotechnol 26:540–548CrossRefPubMedGoogle Scholar
  23. 23.
    Kitano Y, Akira T, Arakaki T (1979) Magnesium calcite synthesis from calcium bicarbonate solution containing magnesium and barium ions. Geochem J 13:181–185CrossRefGoogle Scholar
  24. 24.
    Li W, Liu LP, Chen W, Yu LJ, Li W, Yu H (2010) Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Proc Biochem 45:1017–1021CrossRefGoogle Scholar
  25. 25.
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. Am Con Inst Mat J 98:3–9Google Scholar
  26. 26.
    Ramli M, Kwan WH, Abas NF (2013) Strength and durability of concrete–fiber–reinforced concrete in aggressive environments. Constr Build Mater 18:554–566CrossRefGoogle Scholar
  27. 27.
    Rivadeneyra MA, Delgado R, Delgado G, Moral A, Ferrer MR, Ramos-Cormenzana A (1993) Precipitation of carbonate by Bacillus sp. isolated from saline soils. Geomicrobiol J 11:175–184CrossRefGoogle Scholar
  28. 28.
    Rivadeneyra MA, Delgado R, Párraga J, RamosCormenzana A, Delgado R (2006) Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media. Influence of salt concentration. Folia Microbiol 51:445–453CrossRefGoogle Scholar
  29. 29.
    Rivadeneyra MA, Delgado R, Quesada E, Ramos-Cormenzana A (1991) Precipitation of calcium carbonate by Deleyahalophila in media containing NaCl as sole salt. Curr Microbiol 22:185–190CrossRefGoogle Scholar
  30. 30.
    Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperiin solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46CrossRefPubMedGoogle Scholar
  31. 31.
    Rodriguez-Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñoz MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications in stone conservation. Appl Environ Microbiol 78:4017–4029CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rosen BP (1987) Bacterial calcium transport. Biochem Biophys Acta 906:101–110PubMedGoogle Scholar
  33. 33.
    Rothenstein D, Baier J, Schreiber TD, Barucha V, Bill J (2012) Influence of zinc on the calcium carbonate biomineralization of Halomonas halophile. Aquat Biosyst 8:31CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sayoko Y, Kitano Y (1985) Transformation of aragonite to calcite through heating. Geochem J 19:245–249CrossRefGoogle Scholar
  35. 35.
    Song HW, Lee CH, Ann KY (2008) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem Concr Compos 30:113–121CrossRefGoogle Scholar
  36. 36.
    Stabnikov V, Naeimi M, Ivanov V, Jian C (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41:1143–1149CrossRefGoogle Scholar
  37. 37.
    Stabnikov V, Jian C, Ivanov V, Li Y (2013) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 29(8):1453–1460CrossRefPubMedGoogle Scholar
  38. 38.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571CrossRefGoogle Scholar
  39. 39.
    Val DV, Stewart MG (2003) Life-cycle cost analysis of reinforced concrete structures in marine environments. Struct Saf 25:343–362CrossRefGoogle Scholar
  40. 40.
    Yadav R, Labhsetwar N, Kotwal S, Rayalu S (2011) Single enzyme nanoparticle for biomimetic CO2 sequestration. J Nanopart Res 13:263–271CrossRefGoogle Scholar
  41. 41.
    Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Roohi Bansal
    • 1
  • Navdeep Kaur Dhami
    • 1
  • Abhijit Mukherjee
    • 2
  • M. Sudhakara Reddy
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Department of Civil EngineeringCurtin UniversityBentleyAustralia

Personalised recommendations