Engineered biosynthesis of biodegradable polymers

Review

Abstract

Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

Keywords

Bioplastics Biodegradable polymers Polylactic acid (PLA) Polyhydroxyalkanoates (PHA) Polybutylene succinate (PBS) 

Abbreviations

PLA

Polylactic acid

LAB

Lactic acid bacteria

SSCF

Simultaneous saccharification and co-fermentation

MCRB

Membrane cell-recycle bioreactors

SCL

Short chain length

MCL

Medium chain length

PEG

Polyethylene glycol

PHA

Polyhydroxyalkanoates

PHB

Polyhydroxybutyrate

PBS

Polybutylene succinate

PE

Polyethylene

PTT

Polytrimethylene terephthalate

BDO

Butanediol

EMP

Embden-Meyerhof-Parnas

PK

Pentose phosphoketolase

References

  1. 1.
    Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902. doi:10.1016/j.biotechadv.2013.04.002 PubMedCrossRefGoogle Scholar
  2. 2.
    Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2010) Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89:1039–1049. doi:10.1007/s00253-010-2986-4 CrossRefGoogle Scholar
  3. 3.
    Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86:284–289CrossRefGoogle Scholar
  4. 4.
    Åkerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour Technol 75:119–126CrossRefGoogle Scholar
  5. 5.
    Amara A, Steinbüchel A, Rehm B (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 59:477–482PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  7. 7.
    Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, Miskovic L, Hatzimanikatis V (2016) Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng. doi:10.1016/j.ymben.2016.01.009
  8. 8.
    Babel W, Ackermann J-U, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly (3HB). In: Biopolyesters. Springer, pp. 125–157Google Scholar
  9. 9.
    Baker SE, Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8:e54144. doi:10.1371/journal.pone.0054144 CrossRefGoogle Scholar
  10. 10.
    Balzer GJ, Thakker C, Bennett GN, San K-Y (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+ -dependent formate dehydrogenase. Metab Eng 20:1–8. doi:10.1016/j.ymben.2013.07.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Barton NR, Burgard AP, Burk MJ, Crater JS, Osterhout RE, Pharkya P, Steer BA, Sun J, Trawick JD, Van Dien SJ, Yang TH, Yim H (2014) An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 42:349–360. doi:10.1007/s10295-014-1541-1 PubMedCrossRefGoogle Scholar
  12. 12.
    Berglund KA, Dunuwila DD, Yedur S (2004) Succinic acid production and purification. US Patent US6265190 B1Google Scholar
  13. 13.
    Bianchi MM, Brambilla L, Protani F, Liu C-L, Lievense J, Porro D (2001) Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol 67:5621–5625PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4 % of their fresh weight. Planta 211:841–845PubMedCrossRefGoogle Scholar
  15. 15.
    Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bormann E, Roth M (1999) The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 21:1059–1063CrossRefGoogle Scholar
  17. 17.
    Bradfield MFA, Nicol W (2014) Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: steady-state metabolic flux variation. Biochem Eng J 85:1–7. doi:10.1016/j.bej.2014.01.009 CrossRefGoogle Scholar
  18. 18.
    Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195PubMedCrossRefGoogle Scholar
  19. 19.
    Cavalheiro JM, de Almeida MCM, Grandfils C, da Fonseca M (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515CrossRefGoogle Scholar
  20. 20.
    Chan S, Kanchanatawee S, Jantama K (2012) Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresour Technol 103:329–336. doi:10.1016/j.biortech.2011.09.096 PubMedCrossRefGoogle Scholar
  21. 21.
    Chang D-E, Jung H-C, Rhee J-S, Pan J-G (1999) Homofermentative production of d-or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154. doi:10.1128/aem.67.1.148-154.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chen C-C, Ju L-K (1998) Adsorption characteristics of polyvinylpyridine and activated carbon for lactic acid recovery from fermentation of Lactobacillus delbrueckii. Sep Sci Technol 33:1423–1437CrossRefGoogle Scholar
  24. 24.
    Chen G-Q (2009) Industrial production of PHA. Plast Bact Nat Funct Appl 14:121Google Scholar
  25. 25.
    Chen G-Q, Page WJ (1997) Production of poly-b-hydroxybutyrate by Azotobacter vinelandii in a two-stage fermentation process. Biotechnol Tech 11:347–350CrossRefGoogle Scholar
  26. 26.
    Chen G-Q, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099. doi:10.1021/cr200162d PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng K-K, Zhao X-B, Zeng J, Wu R-C, Xu Y-Z, Liu D-H, Zhang J-A (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95:841–850. doi:10.1007/s00253-012-4214-x PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng K-K, Zhao X-B, Zeng J, Zhang J-A (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod Biorefin 6:302–318. doi:10.1002/bbb.1327 CrossRefGoogle Scholar
  29. 29.
    Clark S, Singh R (2013) Polylactic acid (PLA) market in packaging, textile, agriculture, transportation, bio-medical, electronics and others—global industry size, company share, growth, trends, strategic analysis and forecast, 2012–2020. Allied Market ResearchGoogle Scholar
  30. 30.
    Cui H, Shao J, Wang Y, Zhang P, Chen X, Wei Y (2013) PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. Biomacromolecules 14:1904–1912PubMedCrossRefGoogle Scholar
  31. 31.
    Datta R, Glassner DA (1992) Process for the production and purification of succinic acid. US5143834 AGoogle Scholar
  32. 32.
    Davison BH, Scott CD (1992) A proposed biparticle fluidized bed for lactic acid fermentation and simultaneous adsorption. Biotechnol Bioeng 39:365–368PubMedCrossRefGoogle Scholar
  33. 33.
    De HAB, Van BJ, VAN DERWPLJ, Jansen PP, VIDAL LJM, CERDÀ BA (2013) Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up. WO2013025107 A1Google Scholar
  34. 34.
    Dequin S, Baptista E, Barre P (1999) Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am J Enol Vitic 50:45–50Google Scholar
  35. 35.
    Djukić-Vuković AP, Mojović LV, Jokić BM, Nikolić SB, Pejin JD (2013) Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresour Technol 135:454–458. doi:10.1016/j.biortech.2012.10.066 PubMedCrossRefGoogle Scholar
  36. 36.
    Donnelly MI, Millard CS, Chen MJ, Rathke JW, Clark DP (1998) Biotechnology for fuels and chemicals. In: Applied biochemistry and biotechnology, pp 187–198Google Scholar
  37. 37.
    Eggink G, van der Wal H, Huijberts GN, de Waard P (1992) Oleic acid as a substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163CrossRefGoogle Scholar
  38. 38.
    Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GMF, Reis MAM (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci 9:454–461. doi:10.1002/elsc.200900034 CrossRefGoogle Scholar
  39. 39.
    World Economic Forum (2016) The new plastics economy: rethinking the future of plastics. Available via DIALOG http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf
  40. 40.
    Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336PubMedCrossRefGoogle Scholar
  41. 41.
    Fukui T, Kichise T, Yoshida Y, Doi Y (1997) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxy-heptanoate) terpolymers by recombinant Alcaligenes eutrophus. Biotechnol Lett 19:1093–1097CrossRefGoogle Scholar
  42. 42.
    Garde A, Jonsson G, Schmidt A, Ahring B (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol 81:217–223PubMedCrossRefGoogle Scholar
  43. 43.
    Ge X-Y, Qian H, Zhang W-G (2009) Improvement of l-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour Technol 100:1872–1874. doi:10.1016/j.biortech.2008.09.049 PubMedCrossRefGoogle Scholar
  44. 44.
    González MI, Alvarez S, Riera FA, Álvarez R (2008) Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228:84–96CrossRefGoogle Scholar
  45. 45.
    Gouda M, Swellam A, Omar S (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201PubMedCrossRefGoogle Scholar
  46. 46.
    Guettler MV, Jain MK, Rumler D (1996) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US5573931 AGoogle Scholar
  47. 47.
    Guettler MV, Jain MK, Soni BK (1996) From fermentation of bacterium 130z. Google PatentsGoogle Scholar
  48. 48.
    Gullón B, Alonso JL, Parajó JC (2010) Ion-exchange processing of fermentation media containing lactic acid and oligomeric saccharides. Ind Eng Chem Res 49:3741–3750CrossRefGoogle Scholar
  49. 49.
    Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl Biochem Biotechnol 161:124–136PubMedCrossRefGoogle Scholar
  50. 50.
    Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256PubMedCrossRefGoogle Scholar
  51. 51.
    Hang Y, Hamamci H, Woodams E (1989) Production of L (+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol Lett 11:119–120CrossRefGoogle Scholar
  52. 52.
    Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621PubMedCrossRefGoogle Scholar
  54. 54.
    Hong SH (2007) Systems approaches to succinic acid-producing microorganisms. Biotechnol Bioprocess Eng 12:73–79CrossRefGoogle Scholar
  55. 55.
    Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih J-K, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22:1275–1281PubMedCrossRefGoogle Scholar
  56. 56.
    İnci İ, Aşçı YS, Uslu H (2012) LSER modeling of extraction of succinic acid by tridodecylamine dissolved in 2-octanone and 1-octanol. J Ind Eng Chem 18:152–159. doi:10.1016/j.jiec.2011.11.008 CrossRefGoogle Scholar
  57. 57.
    Inui M, Murakami S, Okino S, Kawaguchi H, Vertès A, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196PubMedCrossRefGoogle Scholar
  58. 58.
    Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl Environ Microbiol 71:1964–1970. doi:10.1128/aem.71.4.1964-1970.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) D-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101:172–177. doi:10.1263/jbb.101.172 PubMedCrossRefGoogle Scholar
  60. 60.
    Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893. doi:10.1002/bit.22005 PubMedCrossRefGoogle Scholar
  61. 61.
    Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. In: Plastics from bacteria. Springer, Berlin, pp 323–346CrossRefGoogle Scholar
  62. 62.
    Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates*. Annu Rev Microbiol 56:403–432PubMedCrossRefGoogle Scholar
  63. 63.
    John RP, Nampoothiri KM, Pandey A (2006) Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnol Lett 28:1823–1826PubMedCrossRefGoogle Scholar
  64. 64.
    John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem 41:759–763CrossRefGoogle Scholar
  65. 65.
    Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 2012Google Scholar
  66. 66.
    Kahar P, Tsuge T, Tguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86CrossRefGoogle Scholar
  67. 67.
    Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2007) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062. doi:10.1007/s00253-007-1244-x PubMedCrossRefGoogle Scholar
  68. 68.
    Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428. doi:10.1128/aem.72.5.3418-3428.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kfoury G, Raquez J-M, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1. doi:10.3389/fchem.2013.00032
  70. 70.
    Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424. doi:10.1007/s00253-012-4649-0 PubMedCrossRefGoogle Scholar
  71. 71.
    Kichise T, Taguchi S, Doi Y (2002) Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol 68:2411–2419PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898. doi:10.1002/bit.260430908 PubMedCrossRefGoogle Scholar
  73. 73.
    Kim BS, Lee SY, Chang HN (1992) Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14:811–816CrossRefGoogle Scholar
  74. 74.
    Kim J-H, Block DE, Shoemaker SP, Mills DA (2010) Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl Microbiol Biotechnol 86:1375–1385PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kim J-H, Shoemaker SP, Mills DA (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155:1351–1359PubMedCrossRefGoogle Scholar
  76. 76.
    Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2:52PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kocharin K, Siewers V, Nielsen J (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 110:2216–2224PubMedCrossRefGoogle Scholar
  78. 78.
    Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397CrossRefGoogle Scholar
  79. 79.
    Krzyżaniak A, Leeman M, Vossebeld F, Visser TJ, Schuur B, de Haan AB (2013) Novel extractants for the recovery of fermentation derived lactic acid. Sep Purif Technol 111:82–89. doi:10.1016/j.seppur.2013.03.031 CrossRefGoogle Scholar
  80. 80.
    Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107:240–245PubMedCrossRefGoogle Scholar
  81. 81.
    Kumar R, Nanavati H, Noronha SB, Mahajani SM (2006) A continuous process for the recovery of lactic acid by reactive distillation. J Chem Technol Biotechnol 81:1767–1777CrossRefGoogle Scholar
  82. 82.
    Kunasundari B (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5:620–634. doi:10.3144/expresspolymlett.2011.60 CrossRefGoogle Scholar
  83. 83.
    Kurzrock T, Weuster-Botz D (2011) New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst Eng 34:779–787PubMedCrossRefGoogle Scholar
  84. 84.
    Kwon S, Yoo I-K, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34PubMedCrossRefGoogle Scholar
  85. 85.
    Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microb Technol 39:1471–1475. doi:10.1016/j.enzmictec.2006.03.037 CrossRefGoogle Scholar
  86. 86.
    Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F (1996) Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142:1169–1180PubMedCrossRefGoogle Scholar
  87. 87.
    Lee P, Lee S, Hong S, Chang H, Park S (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114PubMedCrossRefGoogle Scholar
  88. 88.
    Lee P, Lee W, Kwon S, Lee S, Chang H (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27PubMedCrossRefGoogle Scholar
  89. 89.
    Lee PC, Lee SY, Hong SH, Chang HN (2003) Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst Eng 26:63–67. doi:10.1007/s00449-003-0341-1 PubMedCrossRefGoogle Scholar
  90. 90.
    Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (1999) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2, CO2 supply and glucose concentration. Enzym Microb Technol 24:549–554CrossRefGoogle Scholar
  91. 91.
    Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48PubMedCrossRefGoogle Scholar
  92. 92.
    Lee SC (2011) Extraction of succinic acid from simulated media by emulsion liquid membranes. J Membr Sci 381:237–243CrossRefGoogle Scholar
  93. 93.
    Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948. doi:10.1128/aem.72.3.1939-1948.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lee SLSHHCP (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668. doi:10.1007/s00253-002-0935-6 PubMedCrossRefGoogle Scholar
  95. 95.
    Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14PubMedCrossRefGoogle Scholar
  96. 96.
    Lee SY, Song H, Jang YS, Lee JW (2008) Gene encoding malic enzyme and method for preparing succinic acid using the same. US7470770 B2Google Scholar
  97. 97.
    Li J, Zheng X-Y, Fang X-J, Liu S-W, Chen K-Q, Jiang M, Wei P, Ouyang P-K (2011) A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresour Technol 102:6147–6152. doi:10.1016/j.biortech.2011.02.093 PubMedCrossRefGoogle Scholar
  98. 98.
    Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320PubMedCrossRefGoogle Scholar
  99. 99.
    Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147:1–9PubMedCrossRefGoogle Scholar
  100. 100.
    Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol 143:405–412. doi:10.1016/j.biortech.2013.06.031 PubMedCrossRefGoogle Scholar
  101. 101.
    Lim S-P, Gan S-N, Tan IK (2005) Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Appl Biochem Biotechnol 126:23–33PubMedCrossRefGoogle Scholar
  102. 102.
    Linko S, Vaheri H, Seppälä J (1993) Production of poly-β-hydroxybutyrate on lactic acid by Alcaligenes eutrophus H16 in a 3-l bioreactor. Enzyme Microb Technol 15:401–406CrossRefGoogle Scholar
  103. 103.
    Litsanov B, Brocker M, Bott M (2013) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 6:189–195. doi:10.1111/j.1751-7915.2012.00347.x PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Litsanov B, Kabus A, Brocker M, Bott M (2012) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5:116–128. doi:10.1111/j.1751-7915.2011.00310.x PubMedCrossRefGoogle Scholar
  105. 105.
    Liu F, Li W, Ridgway D, Gu T, Shen Z (1998) Production of poly-β-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnol Lett 20:345–348CrossRefGoogle Scholar
  106. 106.
    Liu R, Liang L, Cao W, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresour Technol 135:574–577. doi:10.1016/j.biortech.2012.08.120 PubMedCrossRefGoogle Scholar
  107. 107.
    Lu Z, Lu M, He F, Yu L (2009) An economical approach for d-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresour Technol 100:2026–2031PubMedCrossRefGoogle Scholar
  108. 108.
    Lu Z, Wei M, Yu L (2012) Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 47:410–415. doi:10.1016/j.procbio.2011.11.022 CrossRefGoogle Scholar
  109. 109.
    Lemoigne M (1926) Products of dehydration and of polymerization of beta-hydroxybutyric acid. Bull Soc Chim Biol 8:770–782Google Scholar
  110. 110.
    Ma K, Maeda T, You H, Shirai Y (2014) Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35PubMedCrossRefGoogle Scholar
  111. 111.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  112. 112.
    Marques S, Santos JA, Gírio FM, Roseiro JC (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem Eng J 41:210–216CrossRefGoogle Scholar
  113. 113.
    Matsumoto KI, Aoki E, Takase K, Doi Y, Taguchi S (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442PubMedCrossRefGoogle Scholar
  114. 114.
    Ki Matsumoto, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1 Ps and the phaG Ps genes of Pseudomonas sp. 61-3. Biomacromolecules 2:934–939CrossRefGoogle Scholar
  115. 115.
    Ki Matsumoto, Takase K, Aoki E, Doi Y, Taguchi S (2005) Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: enhancement of PHA production and alteration of polymer molecular weight. Biomacromolecules 6:99–104CrossRefGoogle Scholar
  116. 116.
    Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22PubMedCrossRefGoogle Scholar
  117. 117.
    Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y (2000) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl Microbiol Biotechnol 53:401–409PubMedCrossRefGoogle Scholar
  118. 118.
    McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng 9:177–192PubMedCrossRefGoogle Scholar
  119. 119.
    McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740. doi:10.1007/s00253-007-1057-y PubMedCrossRefGoogle Scholar
  120. 120.
    Melzoch K, Votruba J, Hábová V, Mr Rychtera (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 56:25–31PubMedCrossRefGoogle Scholar
  121. 121.
    Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135. doi:10.1002/bit.21521 PubMedCrossRefGoogle Scholar
  122. 122.
    Moldes A, Alonso J, Parajo J (2003) Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst Eng 25:357–363PubMedCrossRefGoogle Scholar
  123. 123.
    Moraes LdS, Kronemberger FdA, Ferraz HC, Habert AC (2015) Liquid–liquid extraction of succinic acid using a hollow fiber membrane contactor. J Ind Eng Chem 21:206–211. doi:10.1016/j.jiec.2014.02.026 CrossRefGoogle Scholar
  124. 124.
    Muhammet Şaban T (2012) Optimization of lactic acid production with immobilized Rhizopus oryzae. Afr J Biotechnol 11. doi:10.5897/ajb11.1706
  125. 125.
    Naveena BJ, Altaf M, Bhadrayya K, Reddy G (2004) Production of L (+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technol Biotechnol 472:147–152Google Scholar
  126. 126.
    Noda I, Lindsey SB, Caraway D (2009) Nodax™ cass PHA copolymers: their properties and applications. Plast Bact Nat Funct Appl 14:237Google Scholar
  127. 127.
    Ohleyer E, Blanch HW, Wilke CR (1985) Continuous production of lactic acid in a cell recycle reactor. Appl Biochem Biotechnol 11:317–332CrossRefGoogle Scholar
  128. 128.
    Okano K, Kimura S, Narita J, Fukuda H, Kondo A (2007) Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Appl Microbiol Biotechnol 75:1007–1013. doi:10.1007/s00253-007-0905-0 PubMedCrossRefGoogle Scholar
  129. 129.
    Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) d-lactic acid production from cellooligosaccharides and β-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650PubMedCrossRefGoogle Scholar
  130. 130.
    Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480PubMedCrossRefGoogle Scholar
  131. 131.
    Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464. doi:10.1007/s00253-008-1668-y PubMedCrossRefGoogle Scholar
  132. 132.
    Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454. doi:10.1007/s00253-007-1336-7 PubMedCrossRefGoogle Scholar
  133. 133.
    Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, p 221Google Scholar
  134. 134.
    Park D, Zeikus J (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410PubMedPubMedCentralGoogle Scholar
  135. 135.
    Park J, Chang H (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319PubMedCrossRefGoogle Scholar
  136. 136.
    Park S, Choi J-I, Lee S (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 36:579–588CrossRefGoogle Scholar
  137. 137.
    Park S, Choi J-I, Lee S (2005) Short-chain-length polyhydroxyalkanoates: synthesis in metabolically engineered Escherichia coli and medical applications. J Microbiol Biotechnol 15:206–215Google Scholar
  138. 138.
    Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:82–87CrossRefGoogle Scholar
  139. 139.
    Park SJ, Kim TW, Kim MK, Lee SY, Lim S-C (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206. doi:10.1016/j.biotechadv.2011.11.007 PubMedCrossRefGoogle Scholar
  140. 140.
    Park SJ, Lee SY (2004) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 114:335–346CrossRefGoogle Scholar
  141. 141.
    Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523PubMedCrossRefGoogle Scholar
  142. 142.
    Poirier Y, Erard N, Petetot JMC (2001) Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol 67:5254–5260. doi:10.1128/aem.67.11.5254-5260.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol 13:142–150CrossRefGoogle Scholar
  144. 144.
    Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294–298PubMedCrossRefGoogle Scholar
  145. 145.
    Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12:518–525. doi:10.1016/j.ymben.2010.08.005 PubMedCrossRefGoogle Scholar
  146. 146.
    Raab AM, Hlavacek V, Bolotina N, Lang C (2011) Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 77:1981–1989PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ramchandran L, Sanciolo P, Vasiljevic T, Broome M, Powell I, Duke M (2012) Improving cell yield and lactic acid production of Lactococcus lactis ssp. cremoris by a novel submerged membrane fermentation process. J Membr Sci 403–404:179–187. doi:10.1016/j.memsci.2012.02.042 CrossRefGoogle Scholar
  148. 148.
    Ramsay JA, Berger E, Voyer R, Chavarie C, Ramsay BA (1994) Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol Tech 8:589–594. doi:10.1007/bf00152152 CrossRefGoogle Scholar
  149. 149.
    Ranjan P, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, Cardayre Sd (2002) Genome shuffling of Lactobaciillus for improved acid tolerance. Nat Biotechnol 20:707–712CrossRefGoogle Scholar
  150. 150.
    Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592PubMedCrossRefGoogle Scholar
  151. 151.
    Rojan PJ, Nampoothiri KM, Nair AS, Pandey A (2005) L (+)-Lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol Lett 27:1685–1688PubMedCrossRefGoogle Scholar
  152. 152.
    Rush B (2013) Turning a novel yeast into a platform host for industrial production of fuels and chemicals. In: Metabolic engineering IX, 2013. ECI symposium seriesGoogle Scholar
  153. 153.
    Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Bioeng 82:864–871PubMedCrossRefGoogle Scholar
  154. 154.
    Saito S, Mieno Y, Nagashima T, Kumagai C, Kitamoto K (1996) Breeding of a new type of baker’s yeast by δ-integration for overproduction of glucoamylase using a homothallic yeast. J Ferment Bioeng 81:98–103CrossRefGoogle Scholar
  155. 155.
    Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, Marchi D, Mazzocchetti L, Torri C, Tagliavini E (2015) Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 17:1047–1056. doi:10.1039/c4gc01821d CrossRefGoogle Scholar
  156. 156.
    Samuelov N, Lamed R, Lowe S, Zeikus J (1991) Influence of CO2-HCO3−levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019PubMedPubMedCentralGoogle Scholar
  157. 157.
    Sánchez AM, Bennett GN, San K-Y (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239. doi:10.1016/j.ymben.2005.03.001 PubMedCrossRefGoogle Scholar
  158. 158.
    Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699. doi:10.1007/s00253-008-1703-z PubMedCrossRefGoogle Scholar
  159. 159.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40. doi:10.1002/bbb.189 CrossRefGoogle Scholar
  160. 160.
    Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H (2014) Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol 174:190–197. doi:10.1016/j.biortech.2014.09.137 PubMedCrossRefGoogle Scholar
  161. 161.
    Sikder J, Chakraborty S, Pal P, Drioli E, Bhattacharjee C (2012) Purification of lactic acid from microfiltrate fermentation broth by cross-flow nanofiltration. Biochem Eng J 69:130–137. doi:10.1016/j.bej.2012.09.003 CrossRefGoogle Scholar
  162. 162.
    Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) d-(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109CrossRefGoogle Scholar
  163. 163.
    Song H, Kim TY, Choi B-K, Choi SJ, Nielsen LK, Chang HN, Lee SY (2008) Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl Microbiol Biotechnol 79:263–272PubMedCrossRefGoogle Scholar
  164. 164.
    Song H, Lee JW, Choi S, You JK, Hong WH, Lee SY (2007) Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnol Bioeng 98:1296–1304PubMedCrossRefGoogle Scholar
  165. 165.
    Song S, Hein S, Steinbüchel A (1999) Production of poly (4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol Lett 21:193–197CrossRefGoogle Scholar
  166. 166.
    Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940CrossRefGoogle Scholar
  167. 167.
    Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427PubMedCrossRefGoogle Scholar
  168. 168.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175. doi:10.1016/j.biotechadv.2006.11.007 PubMedCrossRefGoogle Scholar
  169. 169.
    Suzuki T, Yamane T, Shimizu S (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374CrossRefGoogle Scholar
  170. 170.
    Suzuki Y, Kurano M, Arai Y, Nakashita H, Doi Y, Usami R, Horikoshi K, Yamaguchi I (2002) Enzyme inhibitors to increase poly-3-hydroxybutyrate production by transgenic tobacco. Biosci Biotechnol Biochem 66:2537–2542PubMedCrossRefGoogle Scholar
  171. 171.
    Tai Y-S, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol. doi:10.1038/nchembio.2020 PubMedGoogle Scholar
  172. 172.
    Takase K, Matsumoto KI, Taguchi S, Doi Y (2004) Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5:480–485PubMedCrossRefGoogle Scholar
  173. 173.
    Takase K, Taguchi S, Doi Y (2003) Enhanced synthesis of poly (3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J Biochem 133:139–145PubMedCrossRefGoogle Scholar
  174. 174.
    Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217PubMedCrossRefGoogle Scholar
  175. 175.
    Tango M, Ghaly A (2002) A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl Microbiol Biotechnol 58:712–720PubMedCrossRefGoogle Scholar
  176. 176.
    Taskila S, Ojamo H (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. doi:10.5772/51282 Google Scholar
  177. 177.
    Tokuhiro K, Ishida N, Kondo A, Takahashi H (2008) Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Appl Microbiol Biotechnol 79:481–488PubMedCrossRefGoogle Scholar
  178. 178.
    Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H (2009) Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82:883–890. doi:10.1007/s00253-008-1831-5 PubMedCrossRefGoogle Scholar
  179. 179.
    Tsuge T, Watanabe S, Sato S, Hiraishi T, Abe H, Doi Y, Taguchi S (2007) Variation in copolymer composition and molecular weight of polyhydroxyalkanoate generated by saturation mutagenesis of Aeromonas caviae PHA synthase. Macromol Biosci 7:846–854. doi:10.1002/mabi.200700023 PubMedCrossRefGoogle Scholar
  180. 180.
    Tsuge T, Watanabe S, Shimada D, Abe H, Taguchi S (2007) Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 277:217–222PubMedCrossRefGoogle Scholar
  181. 181.
    Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alcohol by the methylotrophic bacteria Paracoccus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 58:3574–3579PubMedPubMedCentralGoogle Scholar
  182. 182.
    Urbance SE, Pometto AL III, DiSpirito AA, Demirci A (2003) Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol 17:53–65CrossRefGoogle Scholar
  183. 183.
    Urbance SE, Pometto AL III, DiSpirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670PubMedCrossRefGoogle Scholar
  184. 184.
    Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342PubMedCrossRefGoogle Scholar
  185. 185.
    Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727. doi:10.1128/aem.68.4.1715-1727.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Venkatesh K (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98CrossRefGoogle Scholar
  187. 187.
    Vickroy TB (1985) Lactic acid. In: Comprehensive biotechnology. The practise of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, pp 761–776Google Scholar
  188. 188.
    Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. doi:10.1016/s0141-3910(02)00372-5 CrossRefGoogle Scholar
  189. 189.
    Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551–564. doi:10.1002/mabi.200400023 PubMedCrossRefGoogle Scholar
  190. 190.
    Wang C, Li Q, Tang H, Zhou W, Yan D, Xing J, Wan Y (2013) Clarification of succinic acid fermentation broth by ultrafiltration in succinic acid bio-refinery. J Chem Technol Biotechnol 88:444–448. doi:10.1002/jctb.3834 CrossRefGoogle Scholar
  191. 191.
    Wang C, Li Q, Wang D, Xing J (2014) Improving the lactic acid production of Actinobacillus succinogenes by using a novel fermentation and separation integration system. Process Biochem 49:1245–1250. doi:10.1016/j.procbio.2014.04.009 CrossRefGoogle Scholar
  192. 192.
    Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 156:6–13. doi:10.1016/j.biortech.2013.12.043 PubMedCrossRefGoogle Scholar
  193. 193.
    Wang J, Yu J (2001) Kinetic analysis on formation of poly (3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol 26:121–126PubMedCrossRefGoogle Scholar
  194. 194.
    Wang P, Zhang FY (2014) Lactic acid fermentation of potato pulp by Rhizopus oryzae IFO 5740. Afr J Food Sci 8:196–199CrossRefGoogle Scholar
  195. 195.
    Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515PubMedCrossRefGoogle Scholar
  196. 196.
    Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  197. 197.
    Wee Y-J, Yun J-S, Lee YY, Zeng A-P, Ryu H-W (2005) Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. J Biosci Bioeng 99:104–108. doi:10.1263/jbb.99.104 PubMedCrossRefGoogle Scholar
  198. 198.
    Wee Y-J, Yun J-S, Park D-H, Ryu H-W (2004) Biotechnological production of L (+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnol Lett 26:71–74PubMedCrossRefGoogle Scholar
  199. 199.
    Xiong M, Schneiderman D, Bates FS, Hillmyer MA, Zhang K (2014) Scalable production of mechanically tunable block polymers from sugar. Proc Nat Acad Sci 111:8357–8362. doi:10.1073/pnas.1404596111 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Yamane T (1993) Yield of poly-d (-)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170PubMedCrossRefGoogle Scholar
  201. 201.
    Yan Q, Zheng P, Tao S-T, Dong J-J (2014) Fermentation process for continuous production of succinic acid in a fibrous bed bioreactor. Biochem Eng J 91:92–98. doi:10.1016/j.bej.2014.08.002 CrossRefGoogle Scholar
  202. 202.
    Yanez R, Alonso JL, Parajó JC (2005) d-Lactic acid production from waste cardboard. J Chem Technol Biotechnol 80:76–84CrossRefGoogle Scholar
  203. 203.
    Yankov D, Molinier J, Kyuchoukov G, Malmary G (2005) Improvement of the lactic acid extraction. Extraction from aqueous solutions and simulated fermentation broth by means of mixed extractant and TOA, partially loaded with HCl. Chem Biochem Eng Q 19:17–24Google Scholar
  204. 204.
    Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44PubMedCrossRefGoogle Scholar
  205. 205.
    Yedur S, Berglund KA, Dunuwila DD (2001) Succinic acid production and purification. US6265190 B1Google Scholar
  206. 206.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452PubMedCrossRefGoogle Scholar
  207. 207.
    Yu J, Chen LXL (2006) Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnol Prog 22:547–553. doi:10.1021/bp050362g PubMedCrossRefGoogle Scholar
  208. 208.
    Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159. doi:10.1016/j.jbiotec.2008.01.008 PubMedCrossRefGoogle Scholar
  209. 209.
    Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401. doi:10.1128/aem.02902-09 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399. doi:10.1016/j.biortech.2014.02.128 PubMedCrossRefGoogle Scholar
  211. 211.
    Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y (2014) Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour Technol 163:160–166. doi:10.1016/j.biortech.2014.04.038 PubMedCrossRefGoogle Scholar
  212. 212.
    Zhang Y, Cong W, Shi SY (2011) Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioprocess Biosystems Eng 34:67–73CrossRefGoogle Scholar
  213. 213.
    Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263. doi:10.1016/j.bej.2007.01.028 CrossRefGoogle Scholar
  214. 214.
    Zheng P, Dong J-J, Sun Z-H, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429. doi:10.1016/j.biortech.2008.11.043 PubMedCrossRefGoogle Scholar
  215. 215.
    Zheng P, Fang L, Xu Y, Dong J-J, Ni Y, Sun Z-H (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol 101:7889–7894. doi:10.1016/j.biortech.2010.05.016 PubMedCrossRefGoogle Scholar
  216. 216.
    Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407. doi:10.1128/aem.69.1.399-407.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Zhou S, Shanmugam KT, Ingram LO (2003) Functional replacement of the Escherichia coli d-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69:2237–2244. doi:10.1128/aem.69.4.2237-2244.2003 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  1. 1.University of Minnesota Twin CitiesMinneapolisUSA

Personalised recommendations