Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1

Short Communication

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

Keywords

Cas9 CRISPR-Cas IMMUNITY Bacillus subtilis Bacteriophage SPP1 

Supplementary material

10295_2016_1784_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 89 kb)

References

  1. 1.
    Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32C:36–41CrossRefGoogle Scholar
  2. 2.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  3. 3.
    Barrangou R, Horvath P (2012) CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 3:143–162CrossRefPubMedGoogle Scholar
  4. 4.
    Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  6. 6.
    Brannen PM, Kenney DS (1997) Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19:169–171CrossRefGoogle Scholar
  7. 7.
    Calendar R, Abedon ST, others, (2005) The bacteriophages. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM (1997) Biological warfare. A historical perspective. JAMA 278:412–417CrossRefPubMedGoogle Scholar
  9. 9.
    Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096CrossRefPubMedGoogle Scholar
  11. 11.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:2579–2586CrossRefGoogle Scholar
  12. 12.
    Hesseltine CW (1983) Microbiology of oriental fermented foods. Annu Rev Microbiol 37:575–601CrossRefPubMedGoogle Scholar
  13. 13.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  15. 15.
    Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327CrossRefPubMedGoogle Scholar
  16. 16.
    Mc Grath S, van Sinderen D (2007) Bacteriophage: genetics and molecular biology. Horizon Scientific Press, Norfolk, UKGoogle Scholar
  17. 17.
    Van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sanchez H, Cozar MC, Martinez-Jimenez MI (2007) Targeting the Bacillus subtilis genome: an efficient and clean method for gene disruption. J Microbiol Methods 70:389–394CrossRefPubMedGoogle Scholar
  19. 19.
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17CrossRefPubMedGoogle Scholar
  21. 21.
    Scherer G (1978) Nucleotide sequence of the O gene and of the origin of replication in bacteriophage lambda DNA. Nucleic Acids Res 5:3141–3156CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310CrossRefPubMedGoogle Scholar
  23. 23.
    Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus subtilis strain QST 713. http://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006479_9-Aug-06.pdf. Accessed 14 Mar 2016

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  1. 1.Institute of Biotechnology, Vilnius UniversityVilniusLithuania

Personalised recommendations