Advancing cell wall inhibitors towards clinical applications

  • Sonia I. Maffioli
  • João  C. S. Cruz
  • Paolo Monciardini
  • Margherita Sosio
  • Stefano Donadio
Natural Products

Abstract

Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity. Consistently, 2014 has seen new, natural product-derived antibiotics approved for human use by the US Food and Drug Administration. One of the recently approved second-generation glycopeptides is dalbavancin, a semi-synthetic derivative of the natural product A40,926. This compound inhibits bacterial growth by binding to lipid intermediate II (Lipid II), a key intermediate in peptidoglycan biosynthesis. Like other recently approved antibiotics, dalbavancin has a complex history of preclinical and clinical development, with several companies contributing to different steps in different years. While our work on dalbavancin development stopped at the previous company, intriguingly our current pipeline includes two more Lipid II-binding natural products or derivatives thereof. In particular, we will focus on the properties of NAI-107 and related lantibiotics, which originated from recent screening and characterization efforts.

References

  1. 1.
    Alduina R, Lo Piccolo L, D’Alia D, Ferraro C, Gunnarsson N, Donadio S, Puglia AM (2007) Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 189:8120–8129PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Arnison PG et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332CrossRefPubMedGoogle Scholar
  4. 4.
    Bugg TD, Braddick D, Dowson CG, Roper DI (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 29:167–173CrossRefPubMedGoogle Scholar
  5. 5.
    Ciabatti R et al (2007) Synthesis and preliminary biological characterization of new semisynthetic derivatives of ramoplanin. J Med Chem 50:3077–3085CrossRefPubMedGoogle Scholar
  6. 6.
    Cruz JCS, Iorio M, Monciardini P, Simone M, Gaspari E, Maffioli S, Wellington E, Sosio M, Brunati C, Donadio S (2015) A brominated variant of the lantibiotic NAI-107 with enhanced antibacterial potency. J Nat Prod (accepted)Google Scholar
  7. 7.
    Dischinger J, Basi Chipalu S, Bierbaum G (2014) Lantibiotics: promising candidates for future applications in health care. Int J Med Microbiol 304:51–62CrossRefPubMedGoogle Scholar
  8. 8.
    Donadio S, Sosio M, Serina S, Mercorillo D (2009) Genes and proteins for the biosynthesis of the lantibiotic 107891. PCT/IB2007/002270Google Scholar
  9. 9.
    Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3:120143PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Fabbretti A, He CG, Gaspari E, Maffioli S, Brandi L, Spurio R, Sosio M, Jabes D, Donadio S (2015) A derivative of the thiopeptide GE2270A highly selective against Propionibacterium acnes. Antimicrob Agents Chemother 59:4560–4568PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA 107:13461–13466PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Iorio M et al (2014) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9:398–404CrossRefPubMedGoogle Scholar
  13. 13.
    Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Jabes D, Brunati C, Candiani G, Riva S, Romanó G, Maffioli S, Rossi R, Simone M, Gaspari E, Donadio S (2014) Pharmacological properties of NAI-603, a well-tolerated semisynthetic derivative of ramoplanin. Antimicrob Agents Chemother 58:1922–1929PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Jabes D, Donadio S (2010) Strategies for the isolation and characterization of antibacterial lantibiotics. Methods Mol Biol 618:31–45CrossRefPubMedGoogle Scholar
  16. 16.
    Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448CrossRefPubMedGoogle Scholar
  17. 17.
    Koehn FE (2008) New strategies and methods in the discovery of natural product anti-infective agents: the mannopeptimycins. J Med Chem 51:2613–2617CrossRefPubMedGoogle Scholar
  18. 18.
    Lancini G (2006) Forty years of antibiotic research at Lepetit: a personal journey. SIM News 56:192–212Google Scholar
  19. 19.
    Lazzarini A, Gastaldo L, Candiani G, Ciciliato I, Losi D, Marinelli F, Selva E, Parenti F (2005) Antibiotic 107891, its factors A1 and A2, pharmaceutically acceptable salts and compositions, and use thereof. WO/2005/014628Google Scholar
  20. 20.
    Lepak AJ, Marchillo K, Craig WA, Andes DR (2015) In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob Agents Chemother 59:1258–1264PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ling LL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefPubMedGoogle Scholar
  22. 22.
    Lo Grasso L, Maffioli S, Sosio M, Bibb M, Puglia AM, Alduina R (2015) Two master switch regulators trigger A40926 biosynthesis in Nonomuraea sp. strain ATCC 39727. J Bacteriol 197:2536–2544PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Maffioli SI, Iorio M, Sosio M, Monciardini P, Gaspari E, Donadio S (2014) Characterization of the congeners in the lantibiotic NAI-107 complex. J Nat Prod 77:79–84CrossRefPubMedGoogle Scholar
  24. 24.
    Maffioli SI, Monciardini P, Catacchio B, Mazzetti C, Münch D, Brunati C, Sahl HG, Donadio S (2015) Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. ACS Chem Biol 10:1034–1042CrossRefPubMedGoogle Scholar
  25. 25.
    Maffioli SI, Potenza D, Vasile F, De Matteo M, Sosio M, Marsiglia B, Rizzo V, Scolastico C, Donadio S (2009) Structure revision of the lantibiotic 97518. J Nat Prod 72:605–607CrossRefPubMedGoogle Scholar
  26. 26.
    Malabarba A, Ciabatti R, Scotti R, Goldstein BP, Ferrari P, Kurz M, Andreini BP, Denaro M (1995) New semisynthetic glycopeptides MDL 63,246 and MDL 63,042, and other amide derivatives of antibiotic A-40,926 active against highly glycopeptide-resistant VanA enterococci. J Antibiot 48:869–883CrossRefPubMedGoogle Scholar
  27. 27.
    Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55(Suppl S2):ii15–ii20PubMedGoogle Scholar
  28. 28.
    Malabarba A, Pallanza R, Berti M, Cavalleri B (1990) Synthesis and biological activity of some amide derivatives of the lantibiotic actagardine. J Antibiot 43:1089–1097CrossRefPubMedGoogle Scholar
  29. 29.
    Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S (2014) Discovering new bioactive compounds from microbial sources. Microb Biotechnol 7:209–220PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Müller A, Münch D, Schmidt Y, Reder-Christ K, Schiffer G, Bendas G, Gross H, Sahl HG, Schneider T, Brötz-Oesterhelt H (2012) The lipodepsipeptide empedopeptin inhibits cell wall biosynthesis through Ca2+-dependent complex formation with peptidoglycan precursors. J Biol Chem 287:20270–20280PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, Maffioli S, Sosio M, Donadio S, Wimmer R, Sahl HG (2014) The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 289:12063–12076PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Pozzi R, Coles M, Linke D, Kulik A, Nega M, Wohlleben W, Stegmann E (2015) Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024. Environ MicrobiolGoogle Scholar
  33. 33.
    Schneider T et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172CrossRefPubMedGoogle Scholar
  34. 34.
    Schneider T, Sahl HG (2011) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169CrossRefGoogle Scholar
  35. 35.
    Simone M, Monciardini P, Gaspari E, Donadio S, Maffioli SI (2013) Isolation and characterization of NAI-802, a new lantibiotic produced by two different Actinoplanes strains. J Antibiot 66:73–78CrossRefPubMedGoogle Scholar
  36. 36.
    Sosio M, Canavesi A, Stinchi S, Donadio S (2010) Improved production of A40926 by Nonomuraea sp. through deletion of a pathway-specific acetyltransferase. Appl Microbiol Biotechnol 87:1633–1638CrossRefPubMedGoogle Scholar
  37. 37.
    Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549CrossRefPubMedGoogle Scholar
  38. 38.
    Walker S, Chen L, Hu Y, Rew Y, Shin D, Boger DL (2005) Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105:449–476CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Sonia I. Maffioli
    • 1
    • 2
  • João  C. S. Cruz
    • 1
  • Paolo Monciardini
    • 1
    • 2
  • Margherita Sosio
    • 1
    • 2
  • Stefano Donadio
    • 1
    • 2
  1. 1.KtedoGen SrlMilanItaly
  2. 2.Naicons SrlMilanItaly

Personalised recommendations