Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum

  • Taowei Yang
  • Zhiming Rao
  • Bernard Gitura Kimani
  • Meijuan Xu
  • Xian Zhang
  • Shang-Tian Yang
Fermentation, Cell Culture and Bioengineering


Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.


Gamma-aminobutyric acid Cassava Corynebacterium glutamicum Lactobacillus plantarum 



This work was supported by the High-tech Research and Development Programs of China (2015AA021004), the National Natural Science Foundation of China (31400082), the Research Project of Chinese Ministry of Education (113033A), the Fundamental Research Funds for the Central Universities (JUSRP11544), the Priority Academic Program Development of Jiangsu Higher Education Institutions,the 111 Project (111-2-06),and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.


  1. 1.
    Akpan I, Ikenebomeh M, Doelle H (1998) Glutamic acid production from cassava whey by Brevibacterium sp. G012. Trop Sci 38:147–150Google Scholar
  2. 2.
    Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Gruetter G (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Choi G-W, Moon S-K, Kang H-W, Min J, Chung B-W (2009) Simultaneous saccharification and fermentation of sludge-containing cassava mash for batch and repeated batch production of bioethanol by Saccharomyces cerevisiae CHFY0321. J Chem Technol Biotechnol 84:547–553. doi: 10.1002/jctb.2077 CrossRefGoogle Scholar
  4. 4.
    Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ (2015) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 14:21. doi: 10.1186/s12934-015-0205-9 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Choi S-U, Nihira T, Yoshida T (2004) Enhanced glutamic acid production of Brevibacterium sp. with temperature shift-up cultivation. J Biosci Bioeng 98:211–213. doi: 10.1016/s1389-1723(04)00268-3 PubMedCrossRefGoogle Scholar
  6. 6.
    George M (2001) Burgey’s manual of systematic bacteriology, 2nd edn. Springer, New YorkGoogle Scholar
  7. 7.
    Gu Y, Hu S, Chen J, Shao L, He H, Yang Y, Yang S, Jiang W (2009) Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. J Ind Microbiol Biotechnol 36:1225–1232. doi: 10.1007/s10295-009-0604-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Brit J Nutr 92:411–417. doi: 10.1079/BJN20041221 PubMedCrossRefGoogle Scholar
  9. 9.
    Jyothi AN, Sasikiran K, Nambisan B, Balagopalan C (2005) Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochem 40:3576–3579. doi: 10.1016/j.procbio.2005.03.046 CrossRefGoogle Scholar
  10. 10.
    Kang TJ, Ho NAT, Pack SP (2013) Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 53:200–205. doi: 10.1016/j.enzmictec.2013.04.006 PubMedCrossRefGoogle Scholar
  11. 11.
    Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT (2009) Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol 130:12–16. doi: 10.1016/j.ijfoodmicro.2008.12.028 PubMedCrossRefGoogle Scholar
  12. 12.
    Kishimoto M, Alfafara C, Nakajima M, Yoshida T, Taguchi H (1989) The use of the maharanobis and modified distances for the improvement of simulation of glutamic acid production. Biotechnol Bioeng 33:191–196PubMedCrossRefGoogle Scholar
  13. 13.
    Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504. doi: 10.1016/ CrossRefGoogle Scholar
  14. 14.
    Kook M-C, Seo M-J, Cheigh C-I, Lee S-J, Pyun Y-R, Park H (2010) Enhancement of γ-amminobutyric acid production by Lactobacillus sakei B2–16 expressing glutamate decarboxylase from Lactobacillus plantarum ATCC 14917. J Korean Soc Appl Biol Chem 53:816–820. doi: 10.3839/jksabc.2010.123 CrossRefGoogle Scholar
  15. 15.
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8. doi: 10.1007/s00253-005-0155-y PubMedCrossRefGoogle Scholar
  16. 16.
    Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116. doi: 10.1007/s00726-010-0582-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Li H, Qiu T, Gao D, Cao Y (2010) Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38:1439–1445PubMedCrossRefGoogle Scholar
  18. 18.
    Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Liu T, Yang T, Zhang S, Xia H, Rao Z (2010) Screening, identification and primary optimizing of a strain producing γ-aminobutyric acid from l-glutamic acid. J Food Sci Biotechnol 29:742–747Google Scholar
  20. 20.
    Masuda K, X-f Guo, Uryu N, Hagiwara T, Watabe S (2008) Isolation of marine yeasts collected from the Pacific Ocean showing a high production of γ-aminobutyric acid. Biosci Biotechnol Biochem 72:3265–3272. doi: 10.1271/bbb.80544 PubMedCrossRefGoogle Scholar
  21. 21.
    Nitayavardhana S, Shrestha P, Rasmussen ML, Lamsal BP, van Leeuwen J, Khanal SK (2010) Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresour Technol 101:2741–2747. doi: 10.1016/j.biortech.2009.10.075 PubMedCrossRefGoogle Scholar
  22. 22.
    Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20. doi: 10.1186/s13568-014-0020-4 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Roy D, Chatrerjee S (1989) Production of glutamic acid by Arthrobacter globiformis: influence of cultural conditions. Folia Microbiol 34:11–24CrossRefGoogle Scholar
  24. 24.
    Seo MJ, Nam YD, Lee SY, Park SL, Yi SH, Lim SI (2013) Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing gamma-aminobutyric acid. Biosci Biotechnol Biochem 77:853–856. doi:DN/JST.JSTAGE/bbb/120785Google Scholar
  25. 25.
    Shi F, Jiang J, Li Y, Xie Y (2013) Enhancement of gamma-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40:1285–1296. doi: 10.1007/s10295-013-1316-0 PubMedCrossRefGoogle Scholar
  26. 26.
    Shi F, Li Y (2011) Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33:2469–2474. doi: 10.1007/s10529-011-0723-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Shukuya R, Schwert G (1960) Glutamic acid decarboxylase, part I. Isolation procedures and properties of the enzyme. J Biol Chem 235:1649–1652PubMedGoogle Scholar
  28. 28.
    Siragusa S, De Angelis M, Di Cagno R, Rizzello C, Coda R, Gobbetti M (2007) Synthesis of γ-amino butyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Tech 51:171–176. doi: 10.1016/j.enzmictec.2012.05.010 CrossRefGoogle Scholar
  30. 30.
    Tian L, Xu M, Rao Z (2012) Construction of a recombinant Escherichia coli BL21/pET-28a-lpgad and the optimization of transformation conditions for the efficient production of γ-aminobutyric acid. Chin J Biotechnol 1:65–75Google Scholar
  31. 31.
    Tujioka K, Thanapreedawat P, Yamada T, Yokogoshi H, Horie K, Kim M, Tsutsui K, Hayase K (2014) Effect of dietary gamma-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats. J Nutr Sci Vitaminol Tokyo 60:60–65PubMedCrossRefGoogle Scholar
  32. 32.
    Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One 7:e40442. doi: 10.1371/journal.pone.0040442 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Yang T-W, Rao Z-M, Zhang X, Xu M-J, Xu Z-H, Yang S-T (2013) Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol 97:7651–7658. doi: 10.1007/s00253-013-5048-x PubMedCrossRefGoogle Scholar
  34. 34.
    Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51:650–658. doi: 10.1002/jobm.201100033 PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi C, Inai S, Matsukura C, Fukuda N, Ezura H, Obata A (2010) Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. J Agric Food Chem 58:615–619. doi: 10.1021/jf903008t PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang R, Yang T, Rao Z, Sun H, Xu M, Zhang X, Xu Z, Yang S (2014) Efficient one-step preparation of [gamma]-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem 16:4190–4197. doi: 10.1039/C4GC00607K CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Song L, Gao Q, Yu S, Li L, Gao N (2012) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94:1619–1627PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Taowei Yang
    • 1
  • Zhiming Rao
    • 1
  • Bernard Gitura Kimani
    • 1
  • Meijuan Xu
    • 1
  • Xian Zhang
    • 1
  • Shang-Tian Yang
    • 2
  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations