Journal of Industrial Microbiology & Biotechnology

, Volume 42, Issue 9, pp 1203–1215 | Cite as

Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain

  • Lena Meissner
  • Kira Kauffmann
  • Timo Wengeler
  • Hitoshi Mitsunaga
  • Eiichiro Fukusaki
  • Jochen BüchsEmail author
Fermentation, Cell Culture and Bioengineering


Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL−1 were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.


Protease and amylase production Bacillus licheniformis Poly(γ-glutamic acid) Ammonium Nitrate 



Poly(γ-glutamic acid)


Dissolved oxygen tension (%)


Optical density at 600 nm (−)


Oxygen transfer rate (mmol L−1 h−1)



The Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and Henkel AG & Co. KGaA (Düsseldorf, Germany) are kindly acknowledged for partly funding this work through the joint research project “Industrieinitiative GenoMik Design” (Support Code 0313917D). Henkel AG & Co. KGaA (Düsseldorf, Germany) is also kindly acknowledged for providing the used Bacillus licheniformis strain.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abe K, Ito Y, Ohmachi T, Asada Y (1997) Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 61(10):1621–1625CrossRefPubMedGoogle Scholar
  2. 2.
    Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162. doi: 10.1016/s1369-703x(00)00116-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17(3):187–194. doi: 10.1016/s1369-703x(03)00181-5 CrossRefGoogle Scholar
  4. 4.
    Asali EC, Mutharasan R, Humphrey AE (1992) Use of NAD(P)H-fluorescence for monitoring the response of starved cells of Catharanthus roseus in suspension to metabolic perturbations. J Biotechnol 23(1):83–94. doi: 10.1016/0168-1656(92)90101-E CrossRefGoogle Scholar
  5. 5.
    Ashiuchi M, Nakamura H, Yamamoto T, Kamei T, Soda K, Park C, Sung MH, Yagi T, Misono H (2003) Poly-gamma-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J Mol Catal B Enzym 23(2–6):249–255. doi: 10.1016/s1381-1177(03)00087-0 CrossRefGoogle Scholar
  6. 6.
    Bajaj I, Singhal R (2011) Poly (glutamic acid)—An emerging biopolymer of commercial interest. Bioresour Technol 102(10):5551–5561. doi: 10.1016/j.biortech.2011.02.047 CrossRefPubMedGoogle Scholar
  7. 7.
    Bedingfield J (2012) The Novozymes Report 2012. Novozymes. Retrieved from: Accessed 10 Apr 2014
  8. 8.
    Bernlohr RW, Schreier HJ, Donohue TJ (1984) Enzymes of glutamate and glutamine biosynthesis in Bacillus licheniformis. Curr Top Cell Regul 24:145–152CrossRefPubMedGoogle Scholar
  9. 9.
    Büchs J, Lotter S, Milbradt C (2001) Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. Biochem Eng J 7(2):135–141. doi: 10.1016/s1369-703x(00)00113-3 CrossRefPubMedGoogle Scholar
  10. 10.
    Buescher JM, Margaritis A (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27(1):1–19. doi: 10.1080/07388550601166458 CrossRefPubMedGoogle Scholar
  11. 11.
    Bulthuis BA, Frankena J, Koningstein GM, Vanverseveld HW, Stouthamer AH (1988) Instability of protease production in a rel+/rel− pair of Bacillus licheniformis and associated morphological and physiological characteristics. Antonie Van Leeuwenhoek J Microb 54(2):95–111CrossRefGoogle Scholar
  12. 12.
    DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) Sensitive new substrate for chymotrypsin. Anal Biochem 99(2):316–320CrossRefPubMedGoogle Scholar
  13. 13.
    Giese H, Azizan A, Kümmel A, Liao AP, Peter CP, Fonseca JA, Hermann R, Duarte TM, Büchs J (2014) Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnol Bioeng 111(2):295–308. doi: 10.1002/bit.25015 CrossRefPubMedGoogle Scholar
  14. 14.
    Giese H, Klöckner W, Peña C, Galindo E, Lotter S, Wetzel K, Meissner L, Peter CP, Büchs J (2014) Effective shear rates in shake flasks. Chem Eng Sci 118:102–113. doi: 10.1016/j.ces.2014.07.037 CrossRefGoogle Scholar
  15. 15.
    Giesecke UE, Bierbaum G, Rudde H, Spohn U, Wandrey C (1991) Production of alkaline protease with Bacillus licheniformis in a controlled fed-batch process. Appl Microbiol Biotechnol 35(6):720–724Google Scholar
  16. 16.
    Harrison DE, Chance B (1970) Fluorimetric technique for monitoring changes in level of reduced nicotinamide nucleotides in continuous cultures of microorganisms. Appl Microbiol 19(3):446–450PubMedCentralPubMedGoogle Scholar
  17. 17.
    Harwood CR (1992) Bacillus subtilis and its relatives—molecular biological and industrial workhorses. Trends Biotechnol 10(7):247–256. doi: 10.1016/0167-7799(92)90233-L CrossRefPubMedGoogle Scholar
  18. 18.
    Herrmann HA, Good I, Läufer A (1997) Manufacturing and downstream processing of detergent enzymes. In: Van Ee J, Misset O, Baas EJ (eds) Enzymes in detergency. Dekker, New York, pp 251–297Google Scholar
  19. 19.
    Kambourova M, Tangney M, Priest FG (2001) Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microb 67(2):1004–1007CrossRefGoogle Scholar
  20. 20.
    Kemblowski Z, Kristiansen B (1986) Rheometry of fermentation liquids. Biotechnol Bioeng 28(10):1474–1483. doi: 10.1002/bit.260281005 CrossRefPubMedGoogle Scholar
  21. 21.
    Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30(6):307–314. doi: 10.1016/j.tibtech.2012.03.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31(8):1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Li X, Gou XY, Long D, Ji ZX, Hu LF, Xu DH, Liu J, Chen SW (2014) Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02. Arch Microbiol 196(11):791–799. doi: 10.1007/s00203-014-1014-y CrossRefPubMedGoogle Scholar
  24. 24.
    Maier B, Dietrich C, Büchs J (2001) Correct application of the sulphite oxidation methodology of measuring the volumetric mass transfer coefficient kLa under non-pressurized and pressurized conditions. Food Bioprod Process 79(C4):107–113CrossRefGoogle Scholar
  25. 25.
    Maurer KH (2004) Detergent proteases. Curr Opin Biotechol 15(4):330–334. doi: 10.1016/j.copbio.2004.06.005 CrossRefGoogle Scholar
  26. 26.
    Meers JL, Pedersen LK (1972) Nitrogen assimilation by Bacillus licheniformis organisms growing in chemostat cultures. J Gen Microbiol 70:277–286CrossRefPubMedGoogle Scholar
  27. 27.
    Nakano MM, Yang F, Hardin P, Zuber P (1995) Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J Bacteriol 177(3):573–579PubMedCentralPubMedGoogle Scholar
  28. 28.
    Ogawa KI, Akagawa E, Yamane K, Sun ZW, Lacelle M, Zuber P, Nakano MM (1995) The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177(5):1409–1413PubMedCentralPubMedGoogle Scholar
  29. 29.
    Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58(2):165–178CrossRefPubMedGoogle Scholar
  30. 30.
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17. doi: 10.1139/W03-076 CrossRefPubMedGoogle Scholar
  31. 31.
    Schreier HJ (1993) Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In: Sonenshein AL (ed) Bacillus subtilis and other gram positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, DC, pp 281–298Google Scholar
  32. 32.
    Wilming A, Begemann J, Kuhne S, Regestein L, Bongaerts J, Evers S, Maurer KH, Büchs J (2013) Metabolic studies of gamma-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations. Biochem Eng J 73:29–37. doi: 10.1016/j.bej.2013.01.008 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Lena Meissner
    • 1
  • Kira Kauffmann
    • 1
  • Timo Wengeler
    • 1
  • Hitoshi Mitsunaga
    • 2
  • Eiichiro Fukusaki
    • 2
  • Jochen Büchs
    • 1
    Email author
  1. 1.AVT. Biochemical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations