Engineering Escherichia coli for high-level production of propionate

  • Lamees Akawi
  • Kajan Srirangan
  • Xuejia Liu
  • Murray Moo-Young
  • C. Perry Chou
Metabolic Engineering and Synthetic Biology

Abstract

Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular “flux competition” between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such “flux competition” and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the potential for industrial application. To our knowledge, this represents the most effective engineered microbial system for propionate production with titers and yields comparable to those achieved by anaerobic batch cultivation of various native propionate-producing strains of Propionibacteria.

Keywords

Escherichia coli Genetic engineering Glycerol Propionate Sleeping beauty mutase 

References

  1. 1.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050 PubMedGoogle Scholar
  2. 2.
    Barbirato F, Chedaille D, Bories A (1997) Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47:441–446. doi:10.1007/s002530050953 CrossRefGoogle Scholar
  3. 3.
    Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555. doi:10.1016/0022-2836(76)90119-4 PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng K-K, Lee B-S, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M (2014) Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5 doi:10.1038/ncomms4233
  5. 5.
    Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14. doi:10.1016/0378-1119(95)00193-A PubMedCrossRefGoogle Scholar
  6. 6.
    Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14:477–486. doi:10.1016/j.ymben.2012.07.006 PubMedCrossRefGoogle Scholar
  7. 7.
    Chou CH, Bennett GN, San KY (1994) Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in escherichia coli dense cultures. Biotechnol Bioeng 44:952–960. doi:10.1002/bit.260440811 PubMedCrossRefGoogle Scholar
  8. 8.
    Coral J, Karp S, de Souza Porto, Vandenberghe L, Parada J, Pandey A, Soccol C (2008) Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotechnol 151:333–341. doi:10.1007/s12010-008-8196-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39. doi:10.1016/j.biotechadv.2008.07.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97:6640–6645. doi:10.1073/pnas.120163297 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. doi:10.1002/bit.22246 PubMedCrossRefGoogle Scholar
  12. 12.
    Gutknecht R, Beutler R, Garcia-Alles LF, Baumann U, Erni B (2001) The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 20:2480–2486. doi:10.1093/emboj/20.10.2480 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Haller T, Buckel T, Rétey J, Gerlt JA (2000) Discovering newenzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622–4629. doi:10.1021/bi992888d PubMedCrossRefGoogle Scholar
  14. 14.
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. doi:10.1016/S0022-2836(83)80284-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 53:435–440. doi:10.1007/s002530051638 PubMedCrossRefGoogle Scholar
  16. 16.
    Hopper DJ, Cooper RA (1971) The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 13:213–216. doi:10.1016/0014-5793(71)80538-0 PubMedCrossRefGoogle Scholar
  17. 17.
    Jin RZ, Lin EC (1984) An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli. J Gen Microbiol 130:83–88. doi:10.1099/00221287-130-1-83 PubMedGoogle Scholar
  18. 18.
    Jobling MG, Holmes RK (1990) Construction of vectors with the pl5A replicon, kanamycin resistance, inducible lacZα and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18:5315–5316. doi:10.1093/nar/18.17.5315 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jones ML, Barnard RT (2005) Chimerization of multiple antibody classes using splice overlap extension PCR. Biotechniques 38:181–182. doi:10.2144/05382BM01 PubMedCrossRefGoogle Scholar
  20. 20.
    Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran KB, Buckel W, Jayaraman G, Ramalingam S (2013) Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol 97:1191–1200. doi:10.1007/s00253-012-4274-y PubMedCrossRefGoogle Scholar
  21. 21.
    Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178:6013–6018PubMedCentralPubMedGoogle Scholar
  22. 22.
    Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381. doi:10.3109/07388551.2011.651428 PubMedCrossRefGoogle Scholar
  23. 23.
    Luchi S, Cole ST, Lin EC (1990) Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control. J Bacteriol 172:179–184Google Scholar
  24. 24.
    Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35:732–738. doi:10.1002/bit.260350711 PubMedCrossRefGoogle Scholar
  25. 25.
    Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Gosset G, Encarnacion S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46. doi:10.1186/1475-2859-11-46 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl Environ Microbiol 76:4327–4336. doi:10.1128/aem.00664-10 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, vol 1. Cold Spring Harbor Laboratory PressGoogle Scholar
  28. 28.
    Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi:10.1128/aem.02192-07 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119:736–747PubMedCentralPubMedGoogle Scholar
  30. 30.
    Quesada-Chanto A, Schmid-Meyer AC, Schroeder AG, Carvalho-Jonas MF, Blanco I, Jonas R (1998) Effect of oxygen supply on biomass, organic acids and vitamin B12 production by Propionibacterium shermanii. World J Microbiol Biotechnol 14:843–846. doi:10.1023/a:1008868907251 CrossRefGoogle Scholar
  31. 31.
    Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278:29837–29855. doi:10.1074/jbc.M213060200 PubMedCrossRefGoogle Scholar
  32. 32.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold spring harbor laboratory press, New YorkGoogle Scholar
  33. 33.
    Sigüenza R, Flores N, Hernández G, Martínez A, Bolivar F, Valle F (1999) Kinetic characterization in batch and continuous culture of Escherichia coli mutants affected in phosphoenolpyruvate metabolism: differences in acetic acid production. World J Microbiol Biotechnol 15:587–592. doi:10.1023/a:1008934810150 CrossRefGoogle Scholar
  34. 34.
    Srirangan K, Akawi L, Liu X, Westbrook A, Blondeel EJ, Aucoin MG, Moo-Young M, Chou CP (2013) Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli. Biotechnol Biofuels 6:139. doi:10.1186/1754-6834-6-139 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Srirangan K, Liu X, Westbrook A, Akawi L, Pyne M, Moo-Young M, Chou CP (2014) Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl Microbiol Biotechnol 98:9499–9515. doi:10.1007/s00253-014-6093-9 PubMedCrossRefGoogle Scholar
  36. 36.
    Sukhija K, Pyne M, Ali S, Orr V, Abedi D, Moo-Young M, Chou CP (2012) Developing an extended genomic engineering approach based on recombineering to knock-in heterologous genes to Escherichia coli genome. Mol Biotechnol 51:109–118. doi:10.1007/s12033-011-9442-2 PubMedCrossRefGoogle Scholar
  37. 37.
    Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562. doi:10.1046/j.1365-2958.1998.00700.x PubMedCrossRefGoogle Scholar
  38. 38.
    Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72:3653–3661. doi:10.1128/aem.72.5.3653-3661.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Wang Z, Sun J, Zhang A, Yang S-T (2013) Propionic acid fermentation. In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinary for sustainable production of fuels, chemical and polymers, 2013th edn. Wiley, Hoboken, pp 331–349CrossRefGoogle Scholar
  40. 40.
    Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. DTIC DocumentGoogle Scholar
  41. 41.
    Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50. doi:10.1128/mmbr.69.1.12-50.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wong MS, Wu S, Causey TB, Bennett GN, San KY (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108. doi:10.1016/j.ymben.2007.10.003 PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang A, Yang S-T (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44:1346–1351. doi:10.1016/j.procbio.2009.07.013 CrossRefGoogle Scholar
  44. 44.
    Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401. doi:10.1128/aem.02902-09 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Zhu Y, Li J, Tan M, Liu L, Jiang L, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906. doi:10.1016/j.biortech.2010.06.070 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Lamees Akawi
    • 1
  • Kajan Srirangan
    • 1
  • Xuejia Liu
    • 1
  • Murray Moo-Young
    • 1
  • C. Perry Chou
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations