Advertisement

Stabilization of single species Synechocystis biofilms by cultivation under segmented flow

  • Christian David
  • Katja BühlerEmail author
  • Andreas Schmid
Short Communication

Abstract

The application of segmented flow on a Synechocystis sp. PCC 6803 biofilm prevented excessive biomass formation and clogging by fundamentally changing the structure of the microbial community. It was possible to continuously operate a capillary microreactor for 5 weeks, before the experiment was actively terminated. The biofilm developed up to a thickness of 70–120 µm. Surprisingly, the biofilm stopped growing at this thickness and stayed constant without any detachment events occurring afterwards. The substrates CO2 and light were supplied in a counter-current fashion. Confocal microscopy revealed a throughout photosynthetically active biofilm, indicated by the red fluorescence of photo pigments. This control concept and biofilm reaction setup may enable continuous light driven synthesis of value added compounds in future.

Keywords

Cyanobacteria Biofilm Hydrodynamic Continuous bioprocess Photosynthesis 

Notes

Acknowledgments

We are grateful to Carl Zeiss Microscopy, especially Dr. F. Josten for technical and apparative support, to the Chair of Chemical Biotechnology (TU Dortmund) for lab space and support, and to Dr. B. Halan and Dr. R. Karande for the helpful discussions.

Conflict of interest

The authors declare no commercial or financial conflict of interest.

References

  1. 1.
    Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1080/0892701031000072190 PubMedGoogle Scholar
  2. 2.
    Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances. Springer, Berlin Heidelberg, pp 1–19CrossRefGoogle Scholar
  3. 3.
    Gross R, Buehler K, Schmid A (2013) Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 110:424–436. doi: 10.1002/bit.24629 PubMedCrossRefGoogle Scholar
  4. 4.
    Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465. doi: 10.1016/j.tibtech.2012.05.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Rosche B, Li XZ, Hauer B et al (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643. doi: 10.1016/j.tibtech.2009.08.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Karande R, Halan B, Schmid A, Buehler K (2014) Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 111:1831–1840. doi: 10.1002/bit.25256 PubMedCrossRefGoogle Scholar
  7. 7.
    Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103. doi: 10.1016/j.tibtech.2010.12.003 PubMedCrossRefGoogle Scholar
  8. 8.
    Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149. doi: 10.4161/bbug.2.3.15285 PubMedCrossRefGoogle Scholar
  9. 9.
    Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413. doi: 10.1016/j.copbio.2013.04.004 PubMedCrossRefGoogle Scholar
  10. 10.
    Gudmundsson S, Nogales J (2015) Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol BioSyst 11:60–70. doi: 10.1039/c4mb00335g PubMedCrossRefGoogle Scholar
  11. 11.
    Nogales J, Gudmundsson S, Thiele I (2013) Toward systems metabolic engineering in cyanobacteria. Bioengineered 4:158–163. doi: 10.4161/bioe.22792 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263. doi: 10.1016/j.copbio.2009.05.011 PubMedCrossRefGoogle Scholar
  13. 13.
    Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12. doi: 10.1111/j.1365-2672.2008.03918.x PubMedCrossRefGoogle Scholar
  14. 14.
    Kühl M, Fenchel T (2000) Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial cyanobacterial mat. Microb Ecol. doi: 10.1007/s002480000061 Google Scholar
  15. 15.
    Fenchel T, Kühl M (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation patterns. Microb Ecol 40:85–93. doi: 10.1007/s002480000062 PubMedGoogle Scholar
  16. 16.
    Al-Najjar MAA, de Beer D, Kühl M, Polerecky L (2012) Light utilization efficiency in photosynthetic microbial mats. Environ Microbiol 14:982–992. doi: 10.1111/j.1462-2920.2011.02676.x PubMedCrossRefGoogle Scholar
  17. 17.
    Zippel B, Neu TR (2005) Growth and structure of phototrophic biofilms under controlled light conditions. Water Sci Technol 52:203–209Google Scholar
  18. 18.
    Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Methods 70:336–345. doi: 10.1016/j.mimet.2007.05.013 PubMedCrossRefGoogle Scholar
  19. 19.
    Wolf G, Picioreanu C, van Loosdrecht MCM (2007) Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol Bioeng 97:1064–1079. doi: 10.1002/bit.21306 PubMedCrossRefGoogle Scholar
  20. 20.
    Fresewinkel M, Rosello R, Wilhelm C et al (2014) Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng Life Sci. doi: 10.1002/elsc.201300153 Google Scholar
  21. 21.
    McCormick AJ, Bombelli P, Scott AM et al (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ Sci 4:4699. doi: 10.1039/c1ee01965a CrossRefGoogle Scholar
  22. 22.
    Roeselers G, Van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235. doi: 10.1007/s10811-007-9223-2 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Van Loosdrecht MCM, Heijnen S (1993) Biofilm bioreactors for waste-water treatment. Trends Biotechnol 11:117–121. doi: 10.1016/0167-7799(93)90085-N CrossRefGoogle Scholar
  24. 24.
    Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205PubMedCentralPubMedGoogle Scholar
  25. 25.
    Rippka R, Deruelles J, Waterbury JB et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  26. 26.
    Shcolnick S, Shaked Y, Keren N (2007) A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:814–819. doi: 10.1016/j.bbabio.2006.11.015 PubMedCrossRefGoogle Scholar
  27. 27.
    Mariné MH, Clavero E, Roldán M (2004) Microscopy methods applied to research on cyanobacteria. Limnetica 23:179–186Google Scholar
  28. 28.
    Vermaas WFJ, Timlin JA, Jones HDT et al (2008) In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci USA 105:4050–4055. doi: 10.1073/pnas.0708090105 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schulze K, López DA, Tillich UM, Frohme M (2011) A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol 11:118. doi: 10.1186/1472-6750-11-118 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schatz D, Nagar E, Sendersky E et al (2013) Self-suppresion of biofilm formation in the cyanobacterium Synechococcus elongatus. Environ Microbiol 15:1786–1794. doi: 10.1111/1462-2920.12070 PubMedCrossRefGoogle Scholar
  31. 31.
    Kühl M, Glud RRN, Ploug H, Ramsing NNB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812. doi: 10.1111/j.0022-3646.1996.00799.x CrossRefGoogle Scholar
  32. 32.
    Tilzer MM (1987) Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zeal J Mar Freshw Res 21:401–412. doi: 10.1080/00288330.1987.9516236 CrossRefGoogle Scholar
  33. 33.
    Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi: 10.1146/annurev-genet-102108-134304 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Daley SME, Kappell AD, Carrick MJ, Burnap RL (2012) Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. PLoS One 7:e41286. doi: 10.1371/journal.pone.0041286 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Christian David
    • 1
  • Katja Bühler
    • 1
    Email author
  • Andreas Schmid
    • 1
  1. 1.Department Solar MaterialsHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany

Personalised recommendations