Advertisement

The dynamic influence of cells on the formation of stable emulsions in organic–aqueous biotransformations

  • Jonathan Collins
  • Marcel Grund
  • Christoph Brandenbusch
  • Gabriele Sadowski
  • Andreas Schmid
  • Bruno Bühler
Fermentation, Cell Culture and Bioengineering

Abstract

Emulsion stability plays a crucial role for mass transfer and downstream processing in organic–aqueous bioprocesses based on whole microbial cells. In this study, emulsion stability dynamics and the factors determining them during two-liquid phase biotransformation were investigated for stereoselective styrene epoxidation catalyzed by recombinant Escherichia coli. Upon organic phase addition, emulsion stability rapidly increased correlating with a loss of solubilized protein from the aqueous cultivation broth and the emergence of a hydrophobic cell fraction associated with the organic–aqueous interface. A novel phase inversion-based method was developed to isolate and analyze cellular material from the interface. In cell-free experiments, a similar loss of aqueous protein did not correlate with high emulsion stability, indicating that the observed particle-based emulsions arise from a convergence of factors related to cell density, protein adsorption, and bioreactor conditions. During styrene epoxidation, emulsion destabilization occurred correlating with product-induced cell toxification. For biphasic whole-cell biotransformations, this study indicates that control of aqueous protein concentrations and selective toxification of cells enables emulsion destabilization and emphasizes that biological factors and related dynamics must be considered in the design and modeling of respective upstream and especially downstream processes.

Keywords

Two-liquid phase biotransformation Whole-cell biocatalysis Pickering emulsion Emulsion stability E. coli 

Notes

Acknowledgments

The financial support by the DFG (projects SA 700/18-1, SCHM 2369/2-1, and BU 2422/A-2) is acknowledged.

References

  1. 1.
    Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100:503–546. doi: 10.1016/S0001-8686(02)00069-6 CrossRefGoogle Scholar
  2. 2.
    Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41. doi: 10.1016/S1359-0294(02)00008-0 CrossRefGoogle Scholar
  3. 3.
    Binks BP, Fletcher PDI (2001) Particles adsorbed at the oil—water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir 17:4708–4710. doi: 10.1021/la0103315 CrossRefGoogle Scholar
  4. 4.
    Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631. doi: 10.1021/la000189s CrossRefGoogle Scholar
  5. 5.
    Binks BP, Lumsdon SO (2000) Transitional phase inversion of solid-stabilized emulsions using particle mixtures. Langmuir 16:3748–3756. doi: 10.1021/la991427q CrossRefGoogle Scholar
  6. 6.
    Brandenbusch C, Bühler B, Hoffmann P, Sadowski G, Schmid A (2010) Efficient phase separation and product recovery in organic–aqueous bioprocessing using supercritical carbon dioxide. Biotechnol Bioeng 107:642–651. doi: 10.1002/bit.22846 PubMedCrossRefGoogle Scholar
  7. 7.
    Brandenbusch C, Sadowski G (2010) Supercritical phase behavior for biotransformation processing. J Supercrit Fluids 55:635–642. doi: 10.1016/j.supflu.2010.10.025 CrossRefGoogle Scholar
  8. 8.
    Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81:683–694. doi: 10.1002/bit.10512 PubMedCrossRefGoogle Scholar
  9. 9.
    Bühler B, Park J-B, Blank LM, Schmid A (2008) NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 74:1436–1446. doi: 10.1128/aem.02234-07 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336. doi: 10.1128/AEM.70.10.6333-6336.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Franks NP, Lieb WR (1987) What is the molecular nature of general anaesthetic target sites? Trends Pharmacol Sci 8:169–174. doi: 10.1016/0165-6147(87)90160-X CrossRefGoogle Scholar
  12. 12.
    Gerrits PJ, Willeman WF, Straathof AJJ, Heijnen JJ, Brussee J, van der Gen A (2001) Mass transfer limitation as a tool to enhance the enantiomeric excess in the enzymatic synthesis of chiral cyanohydrins. J Mol Catal B Enzym 15:111–121. doi: 10.1016/S1381-1177(01)00014-5 CrossRefGoogle Scholar
  13. 13.
    Graham DE, Phillips MC (1979) Proteins at liquid interfaces: III. Molecular structures of adsorbed films. J Colloid Interface Sci 70:427–439. doi: 10.1016/0021-9797(79)90050-X CrossRefGoogle Scholar
  14. 14.
    Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: hydrophobic, electronic, and steric constants. Am Chem Soc, Washington, DCGoogle Scholar
  15. 15.
    Herzig EM, White KA, Schofield AB, Poon WC, Clegg PS (2007) Bicontinuous emulsions stabilized solely by colloidal particles. Nat Mater 6:966–971. doi: 10.1038/nmat2055 PubMedCrossRefGoogle Scholar
  16. 16.
    Jahn M, Vorpahl C, Türkowsky D, Lindmeyer M, Bühler B, Harms H, Müller S (2014) Accurate determination of plasmid copy number on the single cell level using droplet digital PCR. Anal Chem 86:5969–5976. doi: 10.1021/ac501118v PubMedCrossRefGoogle Scholar
  17. 17.
    Julsing MK, Kuhn D, Schmid A, Bühler B (2012) Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng 109:1109–1119. doi: 10.1002/bit.24404 PubMedCrossRefGoogle Scholar
  18. 18.
    Kang ZW, Yeung A, Foght JM, Gray MR (2008) Hydrophobic bacteria at the hexadecane-water interface: examination of micrometre-scale interfacial properties. Colloids Surf Biointerf 67:59–66. doi: 10.1016/j.colsurfb.2008.07.015 CrossRefGoogle Scholar
  19. 19.
    Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur J Biochem 198:31–41. doi: 10.1111/j.1432-1033.1991.tb15983.x PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhn D, Fritzsch FSO, Zhang X, Wendisch VF, Blank LM, Bühler B, Schmid A (2013) Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. J Biotechnol 163:194–203. doi: 10.1016/j.jbiotec.2012.07.194 PubMedCrossRefGoogle Scholar
  21. 21.
    Kuhn D, Julsing MK, Heinzle E, Bühler B (2012) Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment. Green Chem 14:645–653. doi: 10.1039/C2gc15985f CrossRefGoogle Scholar
  22. 22.
    Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827. doi: 10.1039/B921896c CrossRefGoogle Scholar
  23. 23.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  24. 24.
    Leal-Calderon F, Schmitt V (2008) Solid-stabilized emulsions. Curr Opin Colloid Interface Sci 13:217–227. doi: 10.1016/j.cocis.2007.09.005 CrossRefGoogle Scholar
  25. 25.
    Lu TS, Yiao SY, Lim K, Jensen RV, Hsiao LL (2010) Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification. N Am J Med Sci 2:325–328. doi: 10.4297/najms.2010.2325 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Margaritis A, Zajic JE, Gerson DF (1979) Production and surface-active properties of microbial surfactants. Biotechnol Bioeng 21:1151–1162. doi: 10.1002/bit.260210706 CrossRefGoogle Scholar
  27. 27.
    Mathys RG, Kut OM, Witholt B (1998) Alkanol removal from the apolar phase of a two-liquid phase bioconversion system. Part 1: comparison of a less volatile and a more volatile in situ extraction solvent for the separation of 1-octanol by distillation. J Chem Tech Biotechnol 71:315–325. doi: 10.1002/(SICI)1097-4660(199804)71:4<315:AID-JCTB764>3.0.CO;2-2 CrossRefGoogle Scholar
  28. 28.
    Messing J (1979) A multipurpose cloning system based on single-stranded DNA bacteriophage M13. Recomb DNA Tech Bull 2:43–48Google Scholar
  29. 29.
    Mohebali G, Ball A, Kaytash A, Rasekh B (2007) Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIP190A. Microbiol SGM 153:1573–1581. doi: 10.1099/mic.0.2006/002543-0 CrossRefGoogle Scholar
  30. 30.
    Nielsen DR, Daugulis AJ, McLellan PJ (2005) A restructured framework for modeling oxygen transfer in two-phase partitioning bioreactors. Biotechnol Bioeng 91:773–777. doi: 10.1002/bit.20541 PubMedCrossRefGoogle Scholar
  31. 31.
    Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302. doi: 10.1128/JB.186.16.5292-5302.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Panke S, de Lorenzo V, Kaiser A, Witholt B, Wubbolts MG (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623PubMedCentralPubMedGoogle Scholar
  33. 33.
    Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41. doi: 10.1002/bit.10346 PubMedCrossRefGoogle Scholar
  34. 34.
    Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043PubMedCentralPubMedGoogle Scholar
  35. 35.
    Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69:91–100. doi: 10.1002/(SICI)1097-0290(20000705)69:1<91:AID-BIT11>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  36. 36.
    Park J-B, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512. doi: 10.1002/bit.21037 PubMedCrossRefGoogle Scholar
  37. 37.
    Pearson JT (1968) The application of monolayer techniques to a study of protein-surfactant interaction: II. Interactions in adsorbed films at the air/water interface and in oil-in-water emulsions. J Colloid Interface Sci 27:64–74. doi: 10.1016/0021-9797(68)90010-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Pickering SU (1907) CXCVI.-Emulsions. J Chem Soc Trans 91:2001–2021. doi: 10.1039/CT9079102001 CrossRefGoogle Scholar
  39. 39.
    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268. doi: 10.1038/35051736 PubMedCrossRefGoogle Scholar
  40. 40.
    Schmid A, Kollmer A, Witholt B (1998) Effects of biosurfactant and emulsification on two-liquid phase Pseudomonas oleovorans cultures and cell-free emulsions containing n-decane. Enzyme Microb Technol 22:487–493. doi: 10.1016/S0141-0229(97)00238-X CrossRefGoogle Scholar
  41. 41.
    Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 42:6346–6377. doi: 10.1039/c3cs60011d PubMedCrossRefGoogle Scholar
  42. 42.
    Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B (2014) Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnol Bioeng 111:1820–1830. doi: 10.1002/bit.25248 PubMedCrossRefGoogle Scholar
  43. 43.
    Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  44. 44.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedCentralPubMedGoogle Scholar
  45. 45.
    Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 80:149–175PubMedGoogle Scholar
  46. 46.
    Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. doi: 10.1016/j.cbpa.2009.01.018 PubMedCrossRefGoogle Scholar
  47. 47.
    van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzyme Microb Technol 15:722–729. doi: 10.1016/0141-0229(93)90001-I PubMedCrossRefGoogle Scholar
  48. 48.
    Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327. doi: 10.1016/j.tibtech.2008.03.004 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  • Jonathan Collins
    • 1
    • 3
  • Marcel Grund
    • 1
    • 4
  • Christoph Brandenbusch
    • 2
  • Gabriele Sadowski
    • 2
  • Andreas Schmid
    • 1
    • 4
  • Bruno Bühler
    • 1
  1. 1.Laboratory of Chemical BiotechnologyTU Dortmund UniversityDortmundGermany
  2. 2.Laboratory of ThermodynamicsTU Dortmund UniversityDortmundGermany
  3. 3.Amherst CollegeAmherstUSA
  4. 4.Department Solar MaterialsHelmholtz Center for Environmental Research, UFZ GmbHLeipzigGermany

Personalised recommendations